US009470695B2 # (12) United States Patent Anderberg et al. # (10) Patent No.: US 9,470,695 B2 (45) Date of Patent: Oct. 18, 2016 #### (54) METHODS AND COMPOSITIONS FOR DIAGNOSIS AND PROGNOSIS OF RENAL INJURY AND RENAL FAILURE (71) Applicant: **ASTUTE MEDICAL, INC.**, San Diego, CA (US) (72) Inventors: Joseph Anderberg, Encinitas, CA (US); Jeff Gray, Solana Beach, CA (US); Paul McPherson, Encinitas, CA (US); Kevin Nakamura, Cardiff by the Sea, CA (US) (73) Assignee: **ASTUTE MEDICAL, INC.**, San Diego, CA (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. (21) Appl. No.: 14/673,353 (22) Filed: Mar. 30, 2015 #### (65) Prior Publication Data US 2016/0054336 A1 Feb. 25, 2016 #### Related U.S. Application Data - (62) Division of application No. 13/128,392, filed as application No. PCT/US2006/063906 on Nov. 10, 2009, now Pat. No. 8,993,250. - (60) Provisional application No. 61/117,168, filed on Nov. 22, 2008, provisional application No. 61/115,049, filed on Nov. 15, 2008, provisional application No. 61/113,074, filed on Nov. 10, 2008, provisional application No. 61/117,160, filed on Nov. 22, 2008, provisional application No. 61/117,158, filed on Nov. 22, 2008, provisional application No. 61/117,162, filed on Nov. 22, 2008, provisional application No. 61/117,163, filed on Nov. 22, 2008, provisional application No. 61/117,163, filed on Nov. 22, 2008, provisional application No. 61/117,151, filed on Nov. 22, 2008, provisional application No. 61/117,161, filed on Nov. 22, 2008, provisional application No. 61/117,178, filed on Nov. 22, 2008. | (51) | Int. Cl. | | |------|------------|-----------| | | G01N 31/00 | (2006.01) | | | G01N 33/53 | (2006.01) | | | G01N 33/68 | (2006.01) | | | G06F 19/24 | (2011.01) | (52) U.S. Cl. (58) Field of Classification Search CPC . A61K 45/06; A61K 2300/00; C12Q 1/6886 See application file for complete search history. #### (56) References Cited #### U.S. PATENT DOCUMENTS 2008/0038269 A1 2/2008 Susan 2008/0254485 A1 10/2008 Valkirs et al. #### FOREIGN PATENT DOCUMENTS | CN | 1376923 A | 10/2002 | |----|---------------|---------| | | | | | CN | 1791797 A | 6/2006 | | VO | 2004005544 A2 | 1/2004 | | VO | 2004005934 A2 | 1/2004 | | VO | 2005031365 A2 | 4/2005 | | VO | 2008116867 A1 | 10/2008 | #### OTHER PUBLICATIONS Extended European Search Report and Written Opinion issued in EP 15161638 dated May 22, 2015. Office Action issued by SIPO in Chinese patent application No. 2014106460460 dated Oct. 15, 2015. Han et al, Urinary biomarkers in the early diagnosis of acute kidney injury, Kidney Int. Apr. 2008;73(7):863-869. Hidaka et al., Urinary clusterin levels in the rat correlate with the severity of tubular damage and may help to differentiate between glomerular and tubular injuries. Cell Tissue Res. Dec. 2002;310(3):289-296. Taman et al., Increased urinary hepatocyte growth factor excretion in human acute renal failure. Clin Nephrol. Oct. 1997;48(4):241-245. Vaidya et al., Biomarkers of acute kidney injury. Annu Rev Pharmacol Toxicol. 2008;48:463-493. Vaidya et al., Urinary Biomarkers for Sensitive and Specific Detection of Acute Kidney Injury in Humans. Clin Transl Sci. Dec. 2008;1(3):200-208. Alachkar et al., Stem Cell Factor, Interleukin-16, and Interleukin-2 Receptor Alpha are Predictive Biomarkers for Delayed and Slow Graft Function. Transplant Proc. Nov. 2010;42(9):3399-3405. Azzazy et al., Unbound Free Fatty Acids and Heart-Type Fatty Acid—Binding Protein: Diagnostic Assays and Clinical Applications. Clin Chem. Jan. 2006;52(1):19-29. Basile et al., Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. Am J Physiol Renal Physiol. Apr. 2008;294(4):F928-F936. Berthier et al., Metzincins, including matrix metalloproteinases and meprin, in kidney transplantation. Swiss Med Wkly. Dec. 23, 2006;136(49-50):789-794. Brook et al., Fibrosis-associated gene expression in renal transplant glomeruli after acute renal allograft rejection. Br J Surg. Aug. 2003;90(8):1009-1014. (Continued) Primary Examiner — Lisa Cook (74) Attorney, Agent, or Firm — Michael A. Whittaker #### (57) ABSTRACT The present invention relates to methods and compositions for monitoring, diagnosis, prognosis, and determination of treatment regimens in subjects suffering from or suspected of having a renal injury. In particular, the invention relates to using assays that detect one or more markers selected from the group consisting of Clusterin, Heart-type fatty acid binding protein, Hepatocyte growth factor, Interferon gamma, Interleukin-12 subunit beta, Interleukin-16, Interleukin-2, 72 kDa type IV collagenase, Matrix metalloproteinase-9, Midkine, and Serum amyloid P-component as diagnostic and prognostic biomarkers in renal injuries. #### 15 Claims, 120 Drawing Sheets #### (56) References Cited #### OTHER PUBLICATIONS Caron et al., Ischemia—reperfusion injury stimulates gelatinase expression and activity in kidney glomeruli. Can J Physiol Pharmacol. Mar. 2005;83(3):287-300. Daemen et al., Functional Protection by Acute Phase Proteins alpha(1)-Acid Glycoprotein and alpha(1)-Antitrypsin Against Ischemia/Reperfusion Injury by Preventing Apoptosis and Inflammation. Circulation. Sep. 19, 2000;102 (12):1420-1426. Faubel et al., Cisplatin-Induced Acute Renal Failure Is Associated with an Increase in the Cytokines Interleukin (IL)-1beta, IL-18, IL-6, and Neutrophil Infiltration in the Kidney. J Pharmacol Exp Ther. Jul. 2007;322(1):8-15. Gharagozlian et al., Matrix metalloproteinases in subjects with type 1 diabetes. BMC Clin Pathol. Sep. 16, 2009;9:7(5 pages). Gok et al., Use of Two Biomarkers of Renal Ischemia to Assess Machine-perfused Non-Heart-beating Donor Kidneys. Clin Chem. Jan. 2003;49(1):172-175. Hayashi et al., Enhanced Expression of Membrane Type.—1 Matrix Metalloproteinase in Mesangial Proliferative Glomerulonephritis. J Am Soc Nephrol. Dec. 1998;9(12):2262-2271. Hayashi et al., Urinary Midkine Is a Sensitive Biomarker of Ischemic Acute Kidney Injury and an Early Ditection of Acute Kidney Injury in Human. (abstract only) Poster Session: Acute Kidney Injury: Clinical. Poster Board Number: F-P02007 Nov. 7, 2008:1 page. Homsi et al., Interleukin-6 Stimulates Tubular Regeneration in Rats with Glycerol-Induced Acute Renal Failure. Nephron. Sep. 2002;92(1):192-199. Igawa et al., Hepatocyte growth factor may function as a renotropic factor for regeneration in rats with acute renal injury. Am J Physiol. Jul. 1993;265(1 Pt 2):F61-F69. Kamata et al., Up- regulation of glomerular extracellular matrix and transforming growth factor-beta expression in RF/J mice. Kidney Int. Mar. 1999;55(3):864-876. Khanna et al., Expression of TGF- and fibrogenic genes in transplant recipients with tacrolimus and cyclosporine nephrotoxicity. Kidney Int. Dec. 2002;62(6):2257-2263. Kimura et al., Interferon-gamma Plays Protective Roles in Sodium Arsenite-Induced Renal Injury by Up-Regulating intrarenal Multidrug Resistance-Associated Protein 1 Expression. Am J Pathol. Oct. 2006;169(4):1118-1128. Kitching et al., IL-12p40 and IL-18 in Crescentic Glomerulonephritis: IL-12p40 is the Key Th1-Defining Cytokine Chain, Whereas IL-18 Promotes Local Inflammation and Leukocyte Recruitment, J Am Soc Nephrol. Jul. 2005;16 (7):2023-2033. Kucuk et al., Protective effects of doxycycline in ischemia/reperfusion injury on kidney. J Physiol Biochem. Jun. 2009;65(2):183-191. Laplante et al., Modulation of matrix gelatinases and metaloproteinase-activating process in acute kidney rejection. Transpl Int. Apr. 2003;16(4):262-269. Lemay et al., Prominent And Sustained Up-Regulation Of Gp130-Signaling Cytokines and of the Chemokine Mip in Murine Ischemia-Reperfusion Injury. Transplantation. Mar. 15, 2000;69(5):959-963 Libetta et al., Stimulation of Hepatocyte Growth Factor in Human Acute Renal Failure. Nephron. Sep. 1998;80 (1):41-45. Liu et al., Up-regulation of hepatocyte growth factor receptor: An amplification and targeting mechanism for hepatocyte growth factor action in acute renal failure. Kidney Int. Feb. 1999;55(2):442-453. Luhe et al., A New Approach to Studying Ochratoxin A (OTA)-Induced Nephrotoxicity: Expression Profiling in Vivo and in Vitro Employing cDNA Microarrays. Toxicol Sci. Jun. 2003;73(2):315-328. Molls et al., Keratinocyte-derived chemokine is an early biomarker of ischemic acute kidney injury. Am J Physiol Renal Physiol. May 2006;290(5):F1187-F1193. Pelsers et al., Fatty acid-binding proteins as plasma markers of tissue injury. Clin Chim Acta. Feb. 2005;352(1-2):15-35. Pelsers, Fatty acid-binding protein as marker for renal injury. Ned Tijdschr Klin Chem Labgeneesk 2009; 34:250-251. Rysz et al., Serum metalloproteinases MMP-2, MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in patients on hemodialysis. Int Urol Nephrol. Jun. 2011;43(2):491-498. Sato et al., Midkine Is Involved in Neutrophil Infiltration into the Tubulointerstitium in Ischemic Renal Injury. J Immunol. Sep. 15, 2001;167(6):3463-3469. Schaefer et al., Tubular gelatinase A (MMP-2) and its tissue inhibitors in polycystic kidney disease in the Han: SPRD rat. Kidney Int. Jan. 1996;49(1):75-81. Sugimura et al., Production and Activation of Hepatocyte Growth Factor in Acute Renal Failure. Ren Fail. May-Jul. 2001;23(3-4):597-603. Takada et al., The Cytokine-adhesion Molecule Cascade in Ischemia/Reperfusion Injury of the Rat Kidney. Inhibition by a soluble P-selectin ligand. J Clin Invest. Jun. 1, 1997;99(11):2682-2690. Thrailkill et al., Matrix Metalloproteinase-2 Dysregulation in Type 1 Diabetes. Diabetes Care. Sep. 2007;30 (9):2321-2326. Uchio-Yamada et al., Decreased Expression of Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinase in the Kidneys of Hereditary Nephrotic (ICGN) Mice. J Vet Med Sci. Jan. 2005;67(1):35-41. Vaidya et al., Urinary Biomarkers for Sensitive and Specific Detection of Acute Kidney Injury in Humans. Clin Transl Sci.
Dec. 2008;1(3)200-208. Vargas et al., Hepatocyte growth factor in renal failure: Promise and reality. Kidney Int. Apr. 2000;57(4):1426-1436. Wagrowska-Danilewicz and Danilewicz, Aberrant Tubulointerstitial Immunoexpression of Matrix Metalloproteinases MMP-2, MMP-9 and Tissue Inhibitor of Matrix Proteinase-2 (TIMP-2) in Acute Cellular Rejection of Human Renal Allograft. Pol J Pathol. 2008;59(4):189-194. Wang et al., Decreased renal ischemia—reperfusion injury by IL-16 inactivation. Kidney Int. Feb. 2008;73(3):318-326. Wang et al., Endotoxemic acute renal failure is attenuated in caspase-1-deficient mice. Am J Physiol Renal Physiol. May 2005;288(5):F997-F1004. Wasilewska and Zoch-Zwierz, Urinary levels of matrix metalloproteinases and their tissue inhibitors in nephrotic children. Pediatr Nephrol. Oct. 2008;23(10):1795-1802. Witzgall et al., Localization of Proliferating Cell Nuclear Antigen, Vimentin, c-Fos, and Clusterin in the Postischemic Kidney: Evidence for a Heterogenous Genetic Response among Nephron Segments, and a Large Pool of Mitotically Active and Dedifferentiated Cells. J Clin Invest. May 1994;93(5):2175-2188. Zhang et al., Significance of MMP-2 and TIMP-2 mRNA Expressions of Glomerular Cells in the Development of Glomerulosclerosis. Chin Med Sci J. Jun. 2004;19(2):84-88. Zhu et al., Hepatocyte Growth Factor (HGF) and Carbonic Anhydrase IX (CAIX) as Biomarkers for Early Detection of Acute Kidney Injury in Prospective Cohort Study. (abstract only). Poster Session: Acute Kidney Injury: Clinical I, Poster Board No. F-PO2014, Nov. 7, 2008:1 page. Office Action and Search Report issue by SIPO in PRC application No. 2014106460460 dated Mar. 15, 2016—incl Engl lang transl. Chen et al., Expression of hepatocyte growth factor in acute renal failure and its protective effect on renal function. Internal Medicine of China, 2007;2(3):412-414—incl Engl lang transl summary only. Yang et al., Clinical Meaning and Serum Level of HGF in Patients with Chronic Kidney Disease. China Modem Doctor, 2008;46(7):6-8—incl Engl lang transl abstract only. Yuan et al., Changes and significance of serum hepatocyte growth factor in neonates with acute renal failure. Clinical Medicine of China, 2006;22(6):561-562- incl Engl lang transl abstract only. Zhang et al., Expression of serum hepatocyte growth factor in patients with acute renal failure. J Gent South Univ (Med Sci), 2004;29(1):3 pages—incl Engl lang transl abstract only. Office Action issued by the Korean Intellectual Property Office in Korean Patent Application No. 10-2011-7012699 dated Jul. 26, 2016—incl Engl lang transl. Office Action issued by SIPO in Chinese patent application No. 2014106460460 dated Aug. 8, 2016—incl Engl lang transl Search Report only. Nelson et al., Serum amyloid P component in chronic renal failure and dialysis. Clin Chim Acta. Aug. 30, 1991;200(2-3):191-199. ## FIGURE 1 #### Clusterin sCr or UO | | 0 hr prior to | AKI stage | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | | | |------------|---------------|-----------|----------------|-----------|--------------------------|----------|--|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | | median | 67.620 | 108.140 | 67.620 | 96.933 | 67.620 | 62.170 | | | | average | 167.548 | 184.717 | 167.548 | 236.137 | 167.548 | 206.308 | | | | stdev | 302.129 | 175.724 | 302.129 | 507.042 | 302.129 | 496.203 | | | | p (t-test) | | 0.706 | | 0.262 | | 0.605 | | | | min | 3.849 | 7.464 | 3.849 | 1.319 | 3.849 | 0.736 | | | | max | 2047.880 | 694.106 | 2047.880 | 3450.639 | 2047.880 | 2507.730 | | | | n (Samp) | 117 | 51 | 117 | 60 | 117 | 26 | | | | n (Pat) | 99 | 51 | 99 | 60 | 99 | 26 | | | sCr only | | 0 hr prior to | AKI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|---------------|-----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 83.981 | 80.931 | 83.981 | 77.813 | 83.981 | 53.541 | | | average | 184.237 | 113.963 | 184.237 | 169.101 | 184.237 | 172.784 | | | stdev | 349.940 | 133.990 | 349.940 | 322.010 | 349.940 | 273.867 | | | p (t-test) | | 0.411 | | 0.842 | | 0.904 | | | min | 0.736 | 7.794 | 0.736 | 1.543 | 0.736 | 14.404 | | | max | 3450.639 | 526.949 | 3450.639 | 1561.833 | 3450.639 | 881.911 | | | n (Samp) | 260 | 17 | 260 | 23 | 260 | 14 | | | n (Pat) | 160 | 17 | 160 | 23 | 160 | 14 | | UO only | Ĭ | 0 hr prior to | AKI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|---------------|-----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 72.627 | 111.483 | 72.627 | 102.636 | 72.627 | 64.232 | | | average | 162.079 | 416.324 | 162.079 | 245.577 | 162.079 | 200.119 | | | stdev | 290.142 | 1497.119 | 290.142 | 517.556 | 290.142 | 514.718 | | | p (t-test) | | 0.096 | | 0.201 | | 0.628 | | | min | 3.849 | 7.464 | 3.849 | 1.319 | 3.849 | 0.736 | | | max | 2047.880 | 10168.806 | 2047.880 | 3450.639 | 2047.880 | 2507.730 | | | n (Samp) | 105 | 45 | 105 | 50 | 105 | 23 | | | n (Pat) | 84 | 45 | 84 | 50 | 84 | 23 | | sCr or UO | Time | AUC | SE | nCohort 1 | nCohort 2 | p | |-----------|------|-------|-----------|-----------|-------| | prior AKI | | | | | | | stage | | | | | | | 0 hours | 0.61 | 0.048 | 117 | 51 | 0.020 | | 24 hours | 0.54 | 0.046 | 117 | 60 | 0.339 | | 48 hours | 0.48 | 0.062 | 117 | 26 | 0.808 | sCr only | Time
prior AKI
stage | AUC | SE | nCohort 1 | nCohort 2 | р | |----------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.46 | 0.070 | 260 | 17 | 0.582 | | 24 hours | 0.47 | 0.062 | 260 | 23 | 0.651 | | 48 hours | 0.47 | 0.078 | 260 | 14 | 0.683 | UO only | Time
prior AKI
stage | AUC | SE | nCohort 1 | nCohort 2 | р | |----------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.64 | 0.051 | 105 | 45 | 0.008 | | 24 hours | 0.57 | 0.050 | 105 | 50 | 0.176 | | 48 hours | 0.48 | 0.066 | 105 | 23 | 0.718 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% (| CI of OR | |----------------------|-----------------|------|------|----------|-----|-------|----------| | 0 hours | 68.062234 | 71% | 51% | 1 | | | | | | 46.123708 | 80% | 41% | 2 | 1.3 | 0.8 | 2.3 | | | 20.118859 | 90% | 19% | 3 | 2.1 | 1.3 | 3.5 | | 1 | 125.66895 | 45% | 70% | 4 | 3.5 | 2.1 | 5.7 | |----------|-----------|-----|-----|---|-----|-----|-----| | | 194.16184 | 39% | 80% | | | | | | | 390.92356 | 12% | 91% | | | | | | 24 hours | 42.128889 | 70% | 40% | 1 | | | | | | 20.118859 | 80% | 19% | 2 | 0.6 | 0.4 | 0.9 | | | 12.351171 | 90% | 11% | 3 | 1.2 | 0.8 | 1.8 | | | 125.66895 | 38% | 70% | 4 | 1.3 | 0.9 | 1.9 | | | 194.16184 | 23% | 80% | | | | | | | 390.92356 | 15% | 91% | | | | | | 48 hours | 35.544963 | 73% | 34% | 1 | | | | | | 23.299936 | 81% | 24% | 2 | 2.3 | 1.0 | 5.4 | | | 5.0656624 | 92% | 3% | 3 | 2.3 | 1.0 | 5.4 | | | 125.66895 | 31% | 70% | 4 | 1.7 | 0.6 | 4.3 | | | 194.16184 | 15% | 80% | | | | | | | 390.92356 | 15% | 91% | | Ü | | | sCr only | CI OHLY | | | | | | | | |----------------------|-----------|------|------|----------|-----|-----|----------| | | Cutoff | | | | | | | | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% | CI of OR | | 0 hours | 35.544963 | 71% | 28% | 1 | | | | | | 23.299936 | 82% | 21% | 2 | 1.7 | 0.6 | 5.3 | | | 20.118859 | 94% | 17% | 3 | 1.4 | 0.4 | 4.6 | | | 147.85684 | 18% | 70% | 4 | 1.7 | 0.6 | 5.3 | | | 247.36505 | 12% | 80% | | | | | | | 400 | 6% | 92% | | | | | | 24 hours | 33.416142 | 74% | 27% | 1 | | | | | | 21.410305 | 83% | 19% | 2 | 1.2 | 0.6 | 2.7 | | | 7.1564891 | 91% | 5% | 3 | 1.2 | 0.6 | 2.7 | | | 147.85684 | 30% | 70% | 4 | 1.2 | 0.6 | 2.7 | | | 247.36505 | 13% | 80% | | | | | | | 400 | 4% | 92% | | | | | | 48 hours | 35.544963 | 71% | 28% | 1 | | | | | | 22.08047 | 86% | 20% | 2 | 2.1 | 0.5 | 9.7 | | | 16.79504 | 93% | 14% | 3 | 2.1 | 0.4 | 9.5 | | | 147.85684 | 21% | 70% | 4 | 2.1 | 0.5 | 9.7 | | | 247.36505 | 14% | 80% | | | | | | | 400 | 14% | 92% | | | | | | · | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 68.371454 | 71% | 49% | 1 | | | | | | 50.270477 | 80% | 42% | 2 | 3.0 | 1.5 | 5.9 | | | 19.168593 | 91% | 17% | 3 | 1.8 | 0.8 | 3.8 | | | 147.85684 | 47% | 70% | 4 | 7.1 | 3.7 | 13.8 | | | 181.21256 | 44% | 80% | | | | | | | 387.05066 | 16% | 90% | | | | | | 24 hours | 53.596005 | 70% | 44% | 1 | | | | | | 21.840385 | 80% | 23% | 2 | 0.7 | 0.4 | 1.3 | | | 16.227818 | 90% | 15% | 3 | 1.4 | 0.9 | 2.2 | | | 147.85684 | 36% | 70% | 4 | 1.7 | 1.1 | 2.7 | | | 181.21256 | 32% | 80% | | | | | | | 387.05066 | 18% | 90% | | | | | | 48 hours | 35.544963 | 74% | 35% | 1 | | | | | | 24.383414 | 83% | 28% | 2 | 1.6 | 0.6 | 4.2 | | | 5.0656624 | 91% | 2% | 3 | 2.7 | 1.2 | 6.5 | | | 147.85684 | 22% | 70% | 4 | 1.0 | 0.3 | 3.1 | | | 181.21256 | 17% | 80% | | | | | | | 387.05066 | 13% | 90% | | | | | Fatty acid binding protein, heart | sCr | or | UO | | |-----|----|----|--| | | | | | | | 0 hr prior to A | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | | |------------|-----------------|----------|----------------|-----------|----------------|-----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 32.900 | 165.000 | 32.900 | 139.000 | 32.900 | 122.000 | | | average | 293.148 | 586.377 | 293.148 | 1011.722 | 293.148 | 769.790 | | | stdev | 752.839 | 1016.672 | 752.839 | 2426.368 | 752.839 | 1655.881 | | | p (t-test) | | 0.017 | | 0.000 | | 0.008 | | | min | 0.371 | 0.268 | 0.371 | 1.130 | 0.371 | 1.210 | | | max | 8087.000 | 4500.000 | 8087.000 | 14771.000 | 8087.000 | 8087.000 | | | n (Samp) | 249 | 53 | 249 | 62 | 249 |
27 | | | n (Pat) | 104 | 53 | 104 | 62 | 104 | 27 | | sCr only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | 48 hr prior toAKI stage | | |------------|----------------|----------|----------------|-----------|----------------|-------------------------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 60.800 | 106.400 | 60.800 | 74.350 | 60.800 | 111.450 | | | average | 476.484 | 1099.031 | 476.484 | 1865.080 | 476.484 | 647.192 | | | stdev | 1336.601 | 2451.620 | 1336.601 | 3575.691 | 1336.601 | 955.881 | | | p (t-test) | | 0.052 | | 0.000 | | 0.636 | | | min | 0.371 | 0.268 | 0.371 | 1.130 | 0.371 | 5.510 | | | max | 13231.000 | 8087.000 | 13231.000 | 14771.000 | 13231.000 | 2840.000 | | | n (Samp) | 441 | 20 | 441 | 26 | 441 | 14 | | | n (Pat) | 170 | 20 | 170 | 26 | 170 | 14 | | UO only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|----------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 37.800 | 214.000 | 37.800 | 180.000 | 37.800 | 163.000 | | average | 339.709 | 629.554 | 339.709 | 715.528 | 339.709 | 746.260 | | stdev | 954.316 | 1029.634 | 954.316 | 1411.219 | 954.316 | 1668.700 | | p (t-test) | | 0.064 | | 0.023 | | 0.068 | | min | 0.371 | 5.470 | 0.371 | 2.380 | 0.371 | 1.210 | | max | 8087.000 | 4500.000 | 8087.000 | 8087.000 | 8087.000 | 8087.000 | | n (Samp) | 212 | 47 | 212 | 52 | 212 | 25 | | n (Pat) | 85 | 47 | 85 | 52 | 85 | 25 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.64 | 0.044 | 249 | 53 | 0.001 | | 24 hours | 0.63 | 0.041 | 249 | 62 | 0.001 | | 48 hours | 0.62 | 0.060 | 249 | 27 | 0.045 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.54 | 0.067 | 441 | 20 | 0.550 | | 24 hours | 0.54 | 0.059 | 441 | 26 | 0.489 | | 48 hours | 0.57 | 0.081 | 441 | 14 | 0.420 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.70 | 0.046 | 212 | 47 | 0.000 | | 24 hours | 0.68 | 0.044 | 212 | 52 | 0.000 | | 48 hours | 0.64 | 0.062 | 212 | 25 | 0.022 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 05% | CI of OR | |----------------------|-----------------|------|------|----------|-----|------|----------| | 1 5 | | | | Quartic | OK | 7576 | CIGIOR | | 0 hours | 43.8 | 72% | 54% | 1 | | | | | | 14.9 | 81% | 35% | 2 | 1.3 | 0.7 | 2.3 | | | 7.78 | 91% | 17% | 3 | 2.6 | 1.7 | 4.2 | | | 151 | 55% | 70% | 4 | 3.7 | 2.4 | 5.7 | | | 274 | 32% | 80% | | | | | | | 845 | 21% | 90% | | | | | |----------|------|-----|-----|---|-----|-----|-----| | 24 hours | 35 | 71% | 51% | 1 | | | | | | 18.4 | 81% | 39% | 2 | 0.7 | 0.5 | 1.1 | | | 6.02 | 90% | 14% | 3 | 1.5 | 1.1 | 2.1 | | | 151 | 47% | 70% | 4 | 2.4 | 1.8 | 3.3 | | | 274 | 32% | 80% | | | | | | | 845 | 21% | 90% | | | | | | 48 hours | 39.5 | 70% | 53% | 1 | | | | | | 10.4 | 81% | 24% | 2 | 0.3 | 0.1 | 1.2 | | | 5.46 | 93% | 14% | 3 | 1.2 | 0.6 | 2.3 | | | 151 | 48% | 70% | 4 | 2.2 | 1.3 | 3.9 | | | 274 | 41% | 80% | | | | | | | 845 | 22% | 90% | | | | | | • | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-------|----------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% (| CI of OR | | 0 hours | 20 | 70% | 33% | 1 | | | | | | 7.86 | 80% | 15% | 2 | 0.8 | 0.3 | 2.0 | | | 5.13 | 90% | 10% | 3 | 0.8 | 0.3 | 2.0 | | | 191 | 35% | 70% | 4 | 1.4 | 0.7 | 2.9 | | | 306 | 35% | 80% | | | | | | | 1120 | 20% | 90% | | | | | | 24 hours | 10.1 | 73% | 19% | 1 | | | | | | 8.2 | 81% | 15% | 2 | 0.4 | 0.2 | 0.9 | | | 3.98 | 92% | 8% | 3 | 0.3 | 0.1 | 0.8 | | | 191 | 42% | 70% | 4 | 1.1 | 0.7 | 1.7 | | | 306 | 38% | 80% | | | | | | | 1120 | 31% | 90% | | | | | | 48 hours | 16.2 | 71% | 29% | 1 | | | | | | 9.32 | 86% | 17% | 2 | 0.7 | 0.2 | 2.4 | | | 9.27 | 93% | 17% | 3 | 0.2 | 0.0 | 2.9 | | | 191 | 43% | 70% | 4 | 1.5 | 0.6 | 3.6 | | | 306 | 43% | 80% | | | | | | | 1120 | 14% | 90% | | | | | | | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-------|----------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% (| CI of OR | | 0 hours | 98.8 | 70% | 64% | 1 | | | | | | 43.8 | 81% | 52% | 2 | 2.1 | 0.9 | 4.7 | | | 14.9 | 91% | 33% | 3 | 4.1 | 2.0 | 8.3 | | | 156 | 62% | 70% | 4 | 7.2 | 3.7 | 13.9 | | | 267 | 38% | 80% | | | | | | | 1020 | 17% | 90% | | | | | | 24 hours | 64.4 | 71% | 55% | 1 | | | | | | 35 | 81% | 49% | 2 | 1.6 | 0.9 | 2.9 | | | 11.2 | 90% | 25% | 3 | 2.9 | 1.7 | 5.0 | | | 156 | 52% | 70% | 4 | 5.0 | 3.1 | 8.2 | | | 267 | 38% | 80% | | | | | | | 1020 | 19% | 90% | | | | | | 48 hours | 43.8 | 72% | 52% | 1 | | | | | | 31.5 | 80% | 47% | 2 | 1.0 | 0.3 | 2.9 | | | 9.27 | 92% | 19% | 3 | 1.3 | 0.5 | 3.3 | | | 156 | 52% | 70% | 4 | 3.4 | 1.7 | 7.1 | | | 267 | 44% | 80% | | | | | | | 1020 | 20% | 90% | | | | | #### $He patocyte\ growth\ factor$ sCr or UO | | 0 hr prior to A | AKI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|-----------------|-----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 332.751 | 606.005 | 332.751 | 605.973 | 332.751 | 713.738 | | average | 467.138 | 779.409 | 467.138 | 992.715 | 467.138 | 750.183 | | stdev | 455.556 | 644.938 | 455.556 | 1315.054 | 455.556 | 650.933 | | p (t-test) | | 0.000 | | 0.000 | | 0.009 | | min | 27.880 | 42.096 | 27.880 | 14.776 | 27.880 | 38.014 | | max | 2833.841 | 2726.014 | 2833.841 | 7839.221 | 2833.841 | 3067.704 | | n (Samp) | 117 | 51 | 117 | 59 | 117 | 26 | | n (Pat) | 99 | 51 | 99 | 59 | 99 | 26 | sCr only | • | 0 hr prior toA | .KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|----------------|-----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 452.538 | 459.687 | 452.538 | 638.601 | 452.538 | 655.061 | | | average | 652.139 | 572.674 | 652.139 | 886.286 | 652.139 | 648.386 | | | stdev | 759.885 | 648.438 | 759.885 | 982.315 | 759.885 | 380.882 | | | p (t-test) | | 0.674 | | 0.168 | | 0.985 | | | min | 22.466 | 42.096 | 22.466 | 14.776 | 22.466 | 64.024 | | | max | 7839.221 | 2366.004 | 7839.221 | 4229.981 | 7839.221 | 1318.065 | | | n (Samp) | 260 | 17 | 260 | 23 | 260 | 14 | | | n (Pat) | 160 | 17 | 160 | 23 | 160 | 14 | | UO only | j | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 359.932 | 750.965 | 359.932 | 655.623 | 359.932 | 723.983 | | average | 458.895 | 839.663 | 458.895 | 1011.170 | 458.895 | 765.779 | | stdev | 404.053 | 584.266 | 404.053 | 1308.137 | 404.053 | 680.092 | | p (t-test) | | 0.000 | | 0.000 | | 0.005 | | min | 27.880 | 71.485 | 27.880 | 29.280 | 27.880 | 38.014 | | max | 2258.303 | 2726.014 | 2258.303 | 7839.221 | 2258.303 | 3067.704 | | n (Samp) | 105 | 45 | 105 | 49 | 105 | 23 | | n (Pat) | 84 | 45 | 84 | 49 | 84 | 23 | sCr or UO | Time prior
AKI stage | ΛUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.65 | 0.048 | 117 | 51 | 0.002 | | 24 hours | 0.66 | 0.045 | 117 | 59 | 0.000 | | 48 hours | 0.64 | 0.063 | 117 | 26 | 0.024 | sCr only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.44 | 0.069 | 260 | 17 | 0.353 | | 24 hours | 0.57 | 0.065 | 260 | 23 | 0.299 | | 48 hours | 0.57 | 0.082 | 260 | 14 | 0.380 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.72 | 0.048 | 105 | 45 | 0.000 | | 24 hours | 0.69 | 0.048 | 105 | 49 | 0.000 | | 48 hours | 0.64 | 0.067 | 105 | 23 | 0.041 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% | CI of OR | |----------------------|-----------------|------|------|----------|-----|-----|----------| | 0 hours | 373.50372 | 71% | 55% | 1 | | | | | | 237.5733 | 80% | 38% | 2 | 0.6 | 0.4 | 1.2 | | | 85.423471 | 90% | 9% | 3 | 1.3 | 0.8 | 2.1 | | | 518.2926 | 55% | 70% | 4 | 3.5 | 2.3 | 5.5 | | | 756.62964 | 45% | 80% | | | | | | | 1015.7457 | 29% | 91% | | | | | | 24 hours | 314.08152 | 71% | 49% | 1 | | | | |----------|-----------|-----|-----|---|-----|-----|-----| | | 237.5733 | 81% | 38% | 2 | 1.3 | 0.8 | 2.2 | | | 85.423471 | 92% | 9% | 3 | 2.4 | 1.5 | 3.9 | | | 518.2926 | 58% | 70% | 4 | 3.9 | 2.5 | 6.1 | | | 756.62964 | 41% | 80% | | | | | | | 1015.7457 | 31% | 91% | | | | | | 48 hours | 315.00269 | 73% | 49% | 1 | | | | | | 210.92416 | 81% | 35% | 2 | 0.8 | 0.3 | 2.1 | | | 62.722752 | 92% | 3% | 3 | 1.2 | 0.5 | 2.8 | | | 518.2926 | 54% | 70% | 4 | 2.6 | 1.3 | 5.4 | | | 756.62964 | 42% | 80% | | | | | | | 1015.7457 | 27% | 91% | | | | | sCr only | CI Olliy | | | | | | | | |----------------------|-----------|------|------|----------|-----|-----|----------| | | Cutoff | | | | | 1 | | | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% | CI of OR | | 0 hours | 130.16184 | 71% | 15% | 1 | | | | | | 72.246896 | 82% | 7% | 2 | 1.3 | 0.5 | 3.3 | | | 42.09614 | 94% | 4% | 3 | 0.5 | 0.1 | 2.3 | | | 756.62964 | 24% | 70% | 4 | 1.6 | 0.7 | 3.8 | | | 980.60521 | 12% | 80% | | | | | | |
1331.9074 | 12% | 90% | | | | | | 24 hours | 340.9225 | 74% | 39% | 1 | | | | | | 144.77821 | 83% | 17% | 2 | 0.8 | 0.3 | 2.0 | | | 62.722752 | 91% | 4% | 3 | 1.0 | 0.4 | 2.3 | | | 756.62964 | 43% | 70% | 4 | 1.9 | 1.0 | 3.7 | | | 980.60521 | 35% | 80% | | | | | | | 1331.9074 | 17% | 90% | | | | | | 48 hours | 388.05005 | 71% | 43% | 1 | | | | | | 340.9225 | 86% | 39% | 2 | 2.0 | 0.4 | 9.4 | | | 210.92416 | 93% | 25% | 3 | 2.1 | 0.4 | 9.5 | | | 756.62964 | 36% | 70% | 4 | 2.0 | 0.4 | 9.4 | | | 980.60521 | 21% | 80% | | | | | | | 1331.9074 | 0% | 90% | | | | | | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|------|-----|----------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% | CI of OR | | 0 hours | 450.47234 | 71% | 64% | 1 | | | | | | 373.50372 | 80% | 52% | 2 | 2.2 | 0.9 | 5.2 | | | 237.5733 | 91% | 36% | 3 | 4.0 | 1.8 | 8.7 | | | 533.02014 | 62% | 70% | 4 | 10.2 | 4.8 | 21.7 | | | 703.49241 | 51% | 80% | | | | | | | 1013.5018 | 31% | 90% | | | | | | 24 hours | 387.20019 | 71% | 55% | 1 | | | | | | 272.17607 | 82% | 42% | 2 | 2.3 | 1.1 | 4.7 | | | 181.96421 | 92% | 26% | 3 | 3.4 | 1.7 | 6.8 | | | 533.02014 | 59% | 70% | 4 | 7.7 | 4.0 | 14.8 | | | 703.49241 | 47% | 80% | | | | | | | 1013.5018 | 33% | 90% | | | | | | 48 hours | 329.88007 | 74% | 46% | 1 | | | | | | 110.21965 | 83% | 16% | 2 | 0.4 | 0.1 | 1.6 | | | 70.941928 | 91% | 8% | 3 | 1.0 | 0.4 | 2.5 | | | 533.02014 | 52% | 70% | 4 | 2.8 | 1.4 | 5.9 | | | 703.49241 | 52% | 80% | | | | | | | 1013.5018 | 30% | 90% | | | | | #### Interferon gamma | sCr | or | UO | | |-----|----|----|--| | | | | | | | | | | | | 0 hr prior to A | AKI stage | 24 hr prior to | AKI stage | AKI stage | | |------------|-----------------|-----------|----------------|-----------|-----------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 8.780 | 10.200 | 8.780 | 12.700 | 8.780 | 13.000 | | average | 11.553 | 13.182 | 11.553 | 14.609 | 11.553 | 15.863 | | stdev | 8.616 | 8.790 | 8.616 | 10.039 | 8.616 | 11.674 | | p (t-test) | | 0.214 | | 0.016 | | 0.018 | | min | 0.670 | 0.819 | 0.670 | 0.018 | 0.670 | 0.381 | | max | 45.400 | 37.700 | 45.400 | 51.900 | 45.400 | 50.700 | | n (Samp) | 249 | 53 | 249 | 62 | 249 | 27 | | n (Pat) | 104 | 53 | 104 | 62 | 104 | 27 | sCr only | | 0 hr prior toA | KI stage | 24 hr prior toAKI stage | | 48 hr prior to | AKI stage | |------------|----------------|----------|-------------------------|----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 9.770 | 9.690 | 9.770 | 14.700 | 9.770 | 13.000 | | average | 12.213 | 10.669 | 12.213 | 14.294 | 12.213 | 14.816 | | stdev | 8.874 | 7.393 | 8.874 | 10.999 | 8.874 | 10.447 | | p (t-test) | | 0.444 | | 0.252 | | 0.283 | | min | 0.381 | 0.819 | 0.381 | 0.018 | 0.381 | 1.100 | | max | 51.900 | 22.400 | 51.900 | 37.300 | 51.900 | 35.400 | | n (Samp) | 441 | 20 | 441 | 26 | 441 | 14 | | n (Pat) | 170 | 20 | 170 | 26 | 170 | 14 | UO only | | 0 hr prior toA | 0 hr prior toAKI stage | | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|------------------------|----------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 8.940 | 11.800 | 8.940 | 14.100 | 8.940 | 12.800 | | average | 10.821 | 14.603 | 10.821 | 15.395 | 10.821 | 15.231 | | stdev | 7.375 | 8.769 | 7.375 | 8.785 | 7.375 | 10.309 | | p (t-test) | | 0.002 | | 0.000 | | 0.007 | | min | 0.670 | 3.850 | 0.670 | 1.560 | 0.670 | 0.381 | | max | 37.300 | 37.700 | 37.300 | 51.900 | 37.300 | 50.700 | | n (Samp) | 212 | 47 | 212 | 52 | 212 | 25 | | n (Pat) | 85 | 47 | 85 | 52 | 85 | 25 | | sCr or UO | | | | | | | | | | ATTO | ar. | 0.1.1 | 0.1 | | | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.56 | 0.044 | 249 | 53 | 0.153 | | 24 hours | 0.60 | 0.042 | 249 | 62 | 0.017 | | 48 hours | 0.61 | 0.060 | 249 | 27 | 0.066 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.46 | 0.064 | 441 | 20 | 0.517 | | 24 hours | 0.54 | 0.059 | 441 | 26 | 0.524 | | 48 hours | 0.57 | 0.081 | 441 | 14 | 0.371 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.63 | 0.047 | 212 | 47 | 0.006 | | 24 hours | 0.67 | 0.044 | 212 | 52 | 0.000 | | 48 hours | 0.65 | 0.062 | 212 | 25 | 0.019 | | | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-------|----------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% (| CI of OR | | 0 hours | 6.86 | 72% | 42% | 1 | | | | | | 4.85 | 83% | 24% | 2 | 1.1 | 0.7 | 1.6 | | | 3.87 | 92% | 15% | 3 | 1.3 | 0.9 | 2.0 | | | 14.1 | 40% | 70% | 4 | 1.6 | 1.1 | 2.2 | | | 18.9 | 26% | 80% | | | | | | | 24.9 | 11% | 90% | | | | | |----------|------|-----|-----|---|-----|-----|-----| | 24 hours | 9.04 | 71% | 52% | 1 | | | | | | 6.71 | 81% | 40% | 2 | 0.8 | 0.5 | 1.2 | | | 2.8 | 90% | 7% | 3 | 2.2 | 1.6 | 3.1 | | | 14.1 | 47% | 70% | 4 | 2.2 | 1.6 | 3.1 | | | 18.9 | 27% | 80% | | | | | | | 24.9 | 15% | 90% | | | | | | 48 hours | 9.28 | 70% | 53% | 1 | | | | | | 5.8 | 81% | 33% | 2 | 0.6 | 0.2 | 1.8 | | | 1.41 | 93% | 2% | 3 | 1.7 | 0.8 | 3.4 | | | 14.1 | 48% | 70% | 4 | 2.4 | 1.3 | 4.6 | | | 18.9 | 33% | 80% | | | | | | | 24.9 | 19% | 90% | | | | | Cr only | Cr only | | | | | | | | |----------------------|-----------------|------|------|----------|-----|-----|----------| | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% | CI of OR | | 0 hours | 4.87 | 70% | 22% | 1 | | | | | | 3.79 | 80% | 15% | 2 | 1.0 | 0.4 | 2.3 | | | 2.3 | 90% | 7% | 3 | 0.6 | 0.2 | 1.8 | | | 15.6 | 30% | 70% | 4 | 1.4 | 0.7 | 2.9 | | | 19.5 | 20% | 80% | | | | | | | 24.6 | 0% | 90% | | | | | | 24 hours | 3.33 | 73% | 12% | 1 | | | | | | 3.14 | 81% | 11% | 2 | 0.1 | 0.0 | 0.9 | | | 1.56 | 92% | 3% | 3 | 0.5 | 0.3 | 1.0 | | | 15.6 | 42% | 70% | 4 | 1.2 | 0.8 | 1.9 | | | 19.5 | 31% | 80% | | | | | | | 24.6 | 19% | 90% | | | | | | 48 hours | 8.66 | 71% | 44% | 1 | | | | | | 4.4 | 86% | 19% | 2 | 0.7 | 0.1 | 3.5 | | | 1.56 | 93% | 3% | 3 | 1.7 | 0.6 | 5.0 | | | 15.6 | 43% | 70% | 4 | 1.3 | 0.4 | 4.3 | | | 19.5 | 29% | 80% | | | | | | | 24.6 | 21% | 90% | | | | | | | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-----|----------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% | CI of OR | | 0 hours | 8.22 | 70% | 45% | 1 | | | | | | 6.63 | 81% | 39% | 2 | 1.8 | 1.1 | 3.1 | | | 4.43 | 91% | 20% | 3 | 1.3 | 0.7 | 2.3 | | | 13.7 | 49% | 70% | 4 | 3.4 | 2.1 | 5.3 | | | 17.6 | 36% | 80% | | | | | | | 21.9 | 17% | 92% | | | | | | 24 hours | 10 | 71% | 57% | 1 | | | | | | 8.65 | 81% | 49% | 2 | 4.7 | 1.9 | 11.3 | | | 6.84 | 90% | 40% | 3 | 7.3 | 3.1 | 16.9 | | | 13.7 | 50% | 70% | 4 | 9.1 | 4.0 | 20.8 | | | 17.6 | 33% | 80% | | | | | | | 21.9 | 17% | 92% | | | | | | 48 hours | 9.89 | 72% | 57% | 1 | | | | | | 8.62 | 80% | 49% | 2 | 2.6 | 0.6 | 11.2 | | | 5.8 | 92% | 32% | 3 | 5.1 | 1.4 | 18.3 | | | 13.7 | 40% | 70% | 4 | 5.0 | 1.4 | 17.9 | | | 17.6 | 36% | 80% | | | | | | | 21.9 | 20% | 92% | | | | | #### Interleukin-16 sCr or UO | ber or ee | | | | | | | | | | |------------|-------------------------|----------|----------------|-----------|--------------------------|----------|--|--|--| | | 0 hr prior to AKI stage | | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | | | | | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | | | median | 7.710 | 10.500 | 7.710 | 15.500 | 7.710 | 11.000 | | | | | average | 35.934 | 33.794 | 35.934 | 76.873 | 35.934 | 44.054 | | | | | stdev | 121.825 | 63.390 | 121.825 | 172.802 | 121.825 | 108.934 | | | | | p (t-test) | | 0.901 | | 0.031 | | 0.740 | | | | | min | 0.265 | 0.265 | 0.265 | 0.265 | 0.265 | 0.265 | | | | | max | 1100.000 | 294.000 | 1100.000 | 1010.000 | 1100.000 | 531.000 | | | | | n (Samp) | 249 | 53 | 249 | 62 | 249 | 27 | | | | | n (Pat) | 104 | 53 | 104 | 62 | 104 | 27 | | | | Oct. 18, 2016 sCr only | - | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 8.280 | 14.785 | 8.280 | 16.450 | 8.280 | 14.600 | | | average | 38.429 | 114.060 | 38.429 | 108.640 | 38.429 | 74.289 | | | stdev | 116.686 | 244.440 | 116.686 | 209.378 | 116.686 | 132.743 | | | p (t-test) | | 0.008 | | 0.005 | | 0.260 | | | min | 0.265 | 0.265 | 0.265 | 0.265 | 0.265 | 0.265 | | | max | 1100.000 | 1080.000 | 1100.000 | 857.000 | 1100.000 | 439.000 | | | n (Samp) | 441 | 20 | 441 | 26 | 441 | 14 | | | n (Pat) | 170 | 20 | 170 | 26 | 170 | 14 | | UO only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 8.235 | 12.600 | 8.235 | 17.450 | 8.235 | 14.500 | | | average | 30.693 | 33.302 | 30.693 | 77.489 | 30.693 | 56.810 | | | stdev | 103.693 | 61.162 | 103.693 | 172.208 | 103.693 | 119.805 | | | p (t-test) | | 0.868 | | 0.012 | | 0.243 | | | min | 0.265 | 0.265 | 0.265 | 0.265 | 0.265 | 0.265 | | | max | 891.000 | 294.000 | 891.000 | 1010.000 | 891.000 | 531.000 | | | n (Samp) | 212 | 47 | 212 | 52 | 212 | 25 | | | n (Pat) | 85 | 47 | 85 | 52 | 85 | 25 | | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | Р | |-------------------------
------|-------|-----------|-----------|-------| | 0 hours | 0.56 | 0.044 | 249 | 53 | 0.205 | | 24 hours | 0.61 | 0.042 | 249 | 62 | 0.011 | | 48 hours | 0.56 | 0.060 | 249 | 27 | 0.297 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.62 | 0.068 | 441 | 20 | 0.071 | | 24 hours | 0.63 | 0.060 | 441 | 26 | 0.034 | | 48 hours | 0.60 | 0.081 | 441 | 14 | 0.214 | UO only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | р | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.56 | 0.047 | 212 | 47 | 0.195 | | 24 hours | 0.65 | 0.045 | 212 | 52 | 0.001 | | 48 hours | 0.63 | 0.063 | 212 | 25 | 0.038 | | | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-------|----------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% (| CI of OR | | 0 hours | 4.65 | 72% | 33% | 1 | | | | | | 0 | 100% | 0% | 2 | 1.0 | 0.6 | 1.5 | | | 0 | 100% | 0% | 3 | 1.2 | 8.0 | 1.8 | | | 14.4 | 45% | 70% | 4 | 1.8 | 1.3 | 2.6 | | | 22.2 | 25% | 80% | | | | | | | 59.7 | 17% | 90% | | | | | | Laur | | | | | | | | |----------|------|------|-----|---|-----|-----|-----| | 24 hours | 5.64 | 71% | 38% | 1 | | | | | | 0 | 100% | 0% | 2 | 1.0 | 0.7 | 1.5 | | | 0 | 100% | 0% | 3 | 1.9 | 1.4 | 2.7 | | | 14.4 | 53% | 70% | 4 | 2.2 | 1.6 | 3.1 | | | 22.2 | 34% | 80% | | | | | | | 59.7 | 19% | 90% | | | | | | 48 hours | 6.22 | 70% | 44% | 1 | | | | | | 0 | 100% | 0% | 2 | 0.8 | 0.4 | 1.8 | | | 0 | 100% | 0% | 3 | 1.4 | 0.7 | 2.6 | | | 14.4 | 48% | 70% | 4 | 1.4 | 0.7 | 2.6 | | | 22.2 | 22% | 80% | | | | | | | 59.7 | 11% | 90% | | | | | sCr only | _ | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-----|----------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% | CI of OR | | 0 hours | 7.57 | 70% | 47% | 1 | | | | | | 5.2 | 80% | 35% | 2 | 0.7 | 0.2 | 2.4 | | | 0 | 100% | 0% | 3 | 1.0 | 0.4 | 2.8 | | | 16.6 | 50% | 70% | 4 | 2.3 | 1.1 | 4.9 | | | 23.7 | 45% | 80% | | | | | | | 69.8 | 30% | 90% | | | | | | 24 hours | 8.57 | 73% | 52% | 1 | | | | | | 0 | 100% | 0% | 2 | 0.4 | 0.1 | 1.6 | | | 0 | 100% | 0% | 3 | 1.6 | 0.8 | 3.2 | | | 16.6 | 50% | 70% | 4 | 2.3 | 1.3 | 4.2 | | | 23.7 | 38% | 80% | | | | | | | 69.8 | 27% | 90% | | | | | | 48 hours | 6.22 | 71% | 41% | 1 | | | | | | 0 | 100% | 0% | 2 | 0.7 | 0.1 | 3.5 | | | 0 | 100% | 0% | 3 | 1.7 | 0.6 | 5.0 | | | 16.6 | 43% | 70% | 4 | 1.3 | 0.4 | 4.3 | | | 23.7 | 29% | 80% | | | | | | | 69.8 | 21% | 90% | | | | | | | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-------|----------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% (| CI of OR | | 0 hours | 4.65 | 70% | 32% | 1 | | | | | | 0 | 100% | 0% | 2 | 0.6 | 0.4 | 1.0 | | | 0 | 100% | 0% | 3 | 0.8 | 0.5 | 1.2 | | | 13.8 | 49% | 70% | 4 | 1.5 | 1.1 | 2.2 | | | 21.9 | 26% | 80% | | | | | | | 52 | 15% | 90% | | | | | | 24 hours | 9.26 | 71% | 56% | 1 | | | | | | 4.95 | 81% | 33% | 2 | 0.9 | 0.5 | 1.6 | | | 0 | 100% | 0% | 3 | 2.7 | 1.8 | 4.2 | | | 13.8 | 60% | 70% | 4 | 2.9 | 1.9 | 4.5 | | | 21.9 | 35% | 80% | | | | | | | 52 | 21% | 90% | | | | | | 48 hours | 7.71 | 72% | 48% | 1 | | | | | | 6.22 | 80% | 42% | 2 | 1.3 | 0.5 | 3.3 | | | 0 | 100% | 0% | 3 | 1.9 | 0.8 | 4.3 | | | 13.8 | 56% | 70% | 4 | 2.4 | 1.1 | 5.3 | | | 21.9 | 28% | 80% | | | | | | | 52 | 16% | 90% | | | | | #### Interleukin-2 sCr or UO | | 0 hr prior to A | 0 hr prior to AKI stage | | AKI stage | 48 hr prior to AKI stage | | |------------|-----------------|-------------------------|----------|-----------|--------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 0.323 | 0.424 | 0.323 | 0.370 | 0.323 | 0.270 | | average | 1.495 | 0.952 | 1.495 | 0.765 | 1.495 | 0.480 | | stdev | 8.995 | 1.687 | 8.995 | 1.883 | 8.995 | 0.740 | | p (t-test) | | 0.670 | | 0.535 | | 0.567 | | min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | max | 96.860 | 8.363 | 96.860 | 13.553 | 96.860 | 3.002 | | n (Samp) | 117 | 51 | 117 | 60 | 117 | 26 | | n (Pat) | 99 | 51 | 99 | 60 | 99 | 26 | sCr only | | 0 hr prior toA | 0 hr prior toAKI stage | | AKI stage | 48 hr prior toAKI stage | | |------------|----------------|------------------------|----------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 0.335 | 0.349 | 0.335 | 0.376 | 0.335 | 0.450 | | average | 1.218 | 0.825 | 1.218 | 1.105 | 1.218 | 0.765 | | stdev | 6.423 | 1.504 | 6.423 | 2.824 | 6.423 | 0.972 | | p (t-test) | | 0.801 | | 0.934 | | 0.792 | | min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.022 | | max | 96.860 | 5.938 | 96.860 | 13.553 | 96.860 | 3.002 | | n (Samp) | 261 | 17 | 261 | 23 | 261 | 14 | | n (Pat) | 160 | 17 | 160 | 23 | 160 | 14 | UO only | COOM | | | | | | | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------|--| | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 0.324 | 0.424 | 0.324 | 0.358 | 0.324 | 0.274 | | | average | 1.653 | 0.881 | 1.653 | 0.498 | 1.653 | 0.297 | | | stdev | 9.498 | 1.626 | 9.498 | 0.791 | 9.498 | 0.242 | | | p (t-test) | | 0.589 | | 0.393 | | 0.496 | | | min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | max | 96.860 | 8.363 | 96.860 | 5.260 | 96.860 | 0.831 | | | n (Samp) | 105 | 45 | 105 | 50 | 105 | 23 | | | n (Pat) | 84 | 45 | 84 | 50 | 84 | 23 | | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.58 | 0.049 | 117 | 51 | 0.106 | | 24 hours | 0.56 | 0.046 | 117 | 60 | 0.160 | | 48 hours | 0.51 | 0.063 | 117 | 26 | 0.935 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.52 | 0.073 | 261 | 17 | 0.749 | | 24 hours | 0.56 | 0.064 | 261 | 23 | 0.353 | | 48 hours | 0.58 | 0.082 | 261 | 14 | 0.351 | UO only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.55 | 0.052 | 105 | 45 | 0.313 | | 24 hours | 0.54 | 0.050 | 105 | 50 | 0.398 | | 48 hours | 0.47 | 0.066 | 105 | 23 | 0.616 | | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-----|----------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% | CI of OR | | 0 hours | 0.2399449 | 71% | 44% | 1 | | | | | | 0.1435391 | 80% | 40% | 2 | 2.8 | 1.6 | 4.8 | | | 0 | 100% | 0% | 3 | 2.5 | 1.4 | 4.3 | | | 0.4896804 | 43% | 70% | 4 | 2.8 | 1.6 | 4.8 | | | 0.7486972 | 25% | 80% | | | | | | | 1.7654847 | 14% | 91% | | | | | | 24 hours | 0.2365948 | 70% | 44% | 1 | l | | | |----------|-----------|------|-----|---|------|-----|------------------| | | 0.1007266 | 80% | 38% | 2 | 5.3 | 3.0 | 9.2 | | | 0.0027535 | 90% | 32% | 3 | 4.8 | 2.7 | 8.4 | | | 0.4896804 | 35% | 70% | 4 | 3.2 | 1.8 | 5.6 | | | 0.7486972 | 17% | 80% | | | | | | | 1.7654847 | 7% | 91% | | | | | | 48 hours | 0.1603607 | 73% | 42% | 1 | | | | | | 0.0713336 | 81% | 36% | 2 | 10.5 | 3.0 | 37.3 | | | 0 | 100% | 0% | 3 | 2.1 | 0.4 | 10.1 | | | 0.4896804 | 23% | 70% | 4 | 3.3 | 0.8 | 13.8 | | | 0.7486972 | 12% | 80% | | | | | | | 1.7654847 | 8% | 91% | | | | , and the second | sCr only | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-----|----------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% | CI of OR | | 0 hours | 0.1767872 | 71% | 34% | 1 | | | | | | 0.0027535 | 82% | 23% | 2 | 1.0 | 0.3 | 2.8 | | | 0 | 100% | 0% | 3 | 1.0 | 0.4 | 2.8 | | | 0.5364781 | 35% | 70% | 4 | 1.3 | 0.5 | 3.2 | | | 0.7080363 | 24% | 80% | | | | | | | 1.7097552 | 12% | 90% | | | | | | 24 hours | 0.2570186 | 74% | 41% | 1 | | | | | | 0.1335295 | 83% | 30% | 2 | 4.4 | 1.2 | 15.8 | | | 0.0944585 | 91% | 28% | 3 | 3.8 | 1.0 | 14.1 | | | 0.5364781 | 30% | 70% | 4 | 3.2 | 0.8 | 12.5 | | | 0.7080363 | 17% | 80% | | | | | | | 1.7097552 | 9% | 90% | | | | | | 48 hours | 0.189991 | 71% | 34% | 1 | | | | | | 0.1435391 | 86% | 30% | 2 | 5.2 | 0.5 | 58.4 | | | 0.0642177 | 93% | 26% | 3 | 4.1 | 0.3 | 50.7 | | | 0.5364781 | 36% | 70% | 4 | 4.1 | 0.3 | 50.7 | | | 0.7080363 | 21% | 80% | | | | | | | 1.7097552 | 14% | 90% | | | | | | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-----|----------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% | CI of OR | | 0 hours | 0.1570865 | 71% | 38% | 1 | | | | | | 1E-09 | 80% | 30% | 2 | 2.5 | 1.4 | 4.4 | | | 0 | 100% | 0% | 3 | 1.8 | 1.0 | 3.3 | | | 0.4943534 | 40% | 70% | 4 | 2.2 | 1.3 | 4.0 | | | 0.7080363 | 22% | 80% | | | | | | | 2.092275 | 9% | 90% | | | | | | 24 hours | 0.1762841 | 70% | 41% | 1 | | | | | | 0.0683632 | 80% | 33% | 2 | 4.1 | 2.3 | 7.5 | | | 1E-09 | 90% | 30% | 3 | 3.7 | 2.0 | 6.7 | | | 0.4943534 | 36% | 70% | 4 | 2.1 | 1.1 | 4.0 | | | 0.7080363 | 16% | 80% | | | | | | | 2.092275 | 4% | 90% | | | | | | 48 hours | 0.1603607 | 74% | 40% | 1 | | | | | | 0.0356614 | 83% | 32% | 2 | 1.0 | 0.3 | 3.1 | | | 0 | 100% | 0% | 3 | 4.2 | 1.8 | 9.5 | | | 0.4943534 | 17% | 70% | 4 | 0.7 | 0.2 | 2.6 | | | 0.7080363 | 9% | 80% | | | | | | | 2.092275 | 0% | 90% | | | | | ## Interleukin-12 p40 sCr or UO U.S. Patent | | 0 hr prior to A | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|-----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 4.780 | 8.387 | 4.780 | 5.527 | 4.780 | 4.714
| | average | 9.944 | 10.736 | 9.944 | 8.429 | 9.944 | 9.110 | | stdev | 13.422 | 10.485 | 13.422 | 10.716 | 13.422 | 11.666 | | p (t-test) | | 0.708 | | 0.452 | | 0.770 | | min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | max | 66.881 | 41.351 | 66.881 | 52.713 | 66.881 | 44.714 | | n (Samp) | 117 | 51 | 117 | 59 | 117 | 26 | | n (Pat) | 99 | 51 | 99 | 59 | 99 | 26 | sCr only | • | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 5.190 | 5.328 | 5.190 | 5.913 | 5.190 | 9.240 | | average | 9.350 | 10.484 | 9.350 | 10.493 | 9.350 | 11.956 | | stdev | 12.119 | 10.274 | 12.119 | 10.495 | 12.119 | 14.308 | | p (t-test) | | 0.706 | | 0.662 | | 0.438 | | min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | max | 66.881 | 27.881 | 66.881 | 36.019 | 66.881 | 49.268 | | n (Samp) | 260 | 17 | 260 | 23 | 260 | 14 | | n (Pat) | 160 | 17 | 160 | 23 | 160 | 14 | UO only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 5.760 | 9.439 | 5.760 | 3.785 | 5.760 | 4.750 | | average | 9.832 | 12.491 | 9.832 | 7.881 | 9.832 | 9.389 | | stdev | 12.576 | 11.720 | 12.576 | 10.972 | 12.576 | 11.996 | | p (t-test) | | 0.228 | | 0.353 | | 0.878 | | min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | max | 61.635 | 41.936 | 61.635 | 52.713 | 61.635 | 44.714 | | n (Samp) | 105 | 45 | 105 | 49 | 105 | 23 | | n (Pat) | 84 | 45 | 84 | 49 | 84 | 23 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.57 | 0.049 | 117 | 51 | 0.163 | | 24 hours | 0.50 | 0.046 | 117 | 59 | 0.992 | | 48 hours | 0.49 | 0.062 | 117 | 26 | 0.852 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.56 | 0.074 | 260 | 17 | 0.403 | | 24 hours | 0.55 | 0.064 | 260 | 23 | 0.414 | | 48 hours | 0.53 | 0.081 | 260 | 14 | 0.669 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.59 | 0.052 | 105 | 45 | 0.072 | | 24 hours | 0.47 | 0.050 | 105 | 49 | 0.522 | | 48 hours | 0.49 | 0.066 | 105 | 23 | 0.854 | | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 3.1997977 | 71% | 44% | 1 | | | | | | 1.1104935 | 80% | 36% | 2 | 3.4 | 2.0 | 5.8 | | | 0 | 100% | 0% | 3 | 1.8 | 1.0 | 3.2 | | | 12.058681 | 37% | 70% | 4 | 3.1 | 1.8 | 5.2 | | | 18.160458 | 24% | 80% | | | | | | | 26.148501 | 10% | 91% | | | | | | 24 hours | 1.2625972 | 71% | 37% | 1 1 | I | l 1 | l | |----------|-----------|------|-----|-----|-----|-----|-----| | | 0 | 100% | 0% | 2 | 1.8 | 1.2 | 2.8 | | | 0 | 100% | 0% | 3 | 1.7 | 1.1 | 2.5 | | | 12.058681 | 25% | 70% | 4 | 1.0 | 0.6 | 1.6 | | | 18.160458 | 12% | 80% | | | | | | | 26.148501 | 7% | 91% | | | | | | 48 hours | 0 | 100% | 0% | 1 | | | | | | 0 | 100% | 0% | 2 | 1.8 | 0.8 | 3.8 | | | 0 | 100% | 0% | 3 | 0.8 | 0.3 | 2.1 | | | 12.058681 | 23% | 70% | 4 | 2.1 | 1.0 | 4.5 | | | 18.160458 | 19% | 80% | | | | | | | 26.148501 | 8% | 91% | | | | | sCr only | SCI OHLY | | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|----------| | | Cutoff | | | | | | | | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | 'I of OR | | 0 hours | 3.1531486 | 71% | 42% | 1 | | | | | | 0.3767903 | 82% | 30% | 2 | 1.7 | 0.6 | 5.2 | | | 0 | 100% | 0% | 3 | 1.0 | 0.3 | 3.9 | | | 11.13881 | 41% | 70% | 4 | 2.1 | 0.7 | 5.8 | | | 15.281897 | 35% | 80% | | | | | | | 23.495933 | 18% | 90% | | | | | | 24 hours | 2.5686249 | 74% | 40% | 1 | | | | | | 0 | 100% | 0% | 2 | 0.5 | 0.2 | 1.3 | | | 0 | 100% | 0% | 3 | 1.0 | 0.5 | 2.0 | | | 11.13881 | 39% | 70% | 4 | 1.4 | 0.7 | 2.6 | | | 15.281897 | 30% | 80% | | | | | | | 23.495933 | 13% | 90% | | | | | | 48 hours | 0 | 100% | 0% | 1 | | | | | | 0 | 100% | 0% | 2 | 0.2 | 0.0 | 2.1 | | | 0 | 100% | 0% | 3 | 0.6 | 0.2 | 1.8 | | | 11.13881 | 43% | 70% | 4 | 1.0 | 0.4 | 2.3 | | | 15.281897 | 36% | 80% | | | | | | | 23.495933 | 14% | 90% | | | | | | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 4.0303087 | 71% | 45% | 1 | | | | | | 2.9891225 | 80% | 40% | 2 | 2.2 | 1.3 | 4.0 | | | 0 | 100% | 0% | 3 | 1.4 | 0.7 | 2.6 | | | 12.058681 | 40% | 70% | 4 | 3.1 | 1.8 | 5.4 | | | 16.350232 | 36% | 80% | | | | | | | 24.423486 | 20% | 90% | | | | | | 24 hours | 0.1995976 | 71% | 30% | 1 | | | | | | 0 | 100% | 0% | 2 | 1.7 | 1.0 | 2.7 | | | 0 | 100% | 0% | 3 | 1.5 | 0.9 | 2.4 | | | 12.058681 | 24% | 70% | 4 | 1.3 | 0.8 | 2.2 | | | 16.350232 | 10% | 80% | | | | | | | 24.423486 | 6% | 90% | | | | | | 48 hours | 0 | 100% | 0% | 1 | | | | | | 0 | 100% | 0% | 2 | 1.0 | 0.4 | 2.5 | | | 0 | 100% | 0% | 3 | 1.5 | 0.7 | 3.4 | | | 12.058681 | 26% | 70% | 4 | 1.2 | 0.5 | 3.0 | | | 16.350232 | 22% | 80% | | | | | | | 24.423486 | 9% | 90% | | | | | #### Matrix metalloproteinase-2 | _ | | TI | - | |-----|----|----|---| | sCr | or | U | C | U.S. Patent | | 0 hr prior to A | AK1 stage | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | | |------------|-----------------|-----------|----------------|-----------|--------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 19.300 | 27.700 | 19.300 | 24.900 | 19.300 | 23.700 | | | average | 24.737 | 34.357 | 24.737 | 59.008 | 24.737 | 35.013 | | | stdev | 25.360 | 27.697 | 25.360 | 165.081 | 25.360 | 43.441 | | | p (t-test) | | 0.014 | | 0.002 | | 0.067 | | | min | 0.600 | 0.600 | 0.600 | 0.600 | 0.600 | 2.470 | | | max | 293.000 | 190.000 | 293.000 | 1280.000 | 293.000 | 235.000 | | | n (Samp) | 249 | 53 | 249 | 62 | 249 | 27 | | | n (Pat) | 104 | 53 | 104 | 62 | 104 | 27 | | sCr only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|----------------|----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 21.000 | 29.250 | 21.000 | 33.350 | 21.000 | 28.400 | | | average | 30.159 | 32.912 | 30.159 | 41.482 | 30.159 | 36.436 | | | stdev | 67.363 | 17.263 | 67.363 | 26.611 | 67.363 | 24.845 | | | p (t-test) | | 0.855 | | 0.394 | | 0.728 | | | min | 0.600 | 6.640 | 0.600 | 4.660 | 0.600 | 8.610 | | | max | 1280.000 | 76.800 | 1280.000 | 96.100 | 1280.000 | 98.400 | | | n (Samp) | 441 | 20 | 441 | 26 | 441 | 14 | | | n (Pat) | 170 | 20 | 170 | 26 | 170 | 14 | | UO only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | | | | |------------|----------------|----------|----------------|-----------|-------------------------|----------|--|--|--|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | | | | median | 19.400 | 27.700 | 19.400 | 24.600 | 19.400 | 23.700 | | | | | | average | 24.609 | 36.368 | 24.609 | 62.193 | 24.609 | 36.338 | | | | | | stdev | 25.694 | 29.111 | 25.694 | 179.932 | 25.694 | 44.747 | | | | | | p (t-test) | | 0.006 | | 0.004 | | 0.051 | | | | | | min | 0.600 | 0.600 | 0.600 | 0.600 | 0.600 | 2.470 | | | | | | max | 293.000 | 190.000 | 293.000 | 1280.000 | 293.000 | 235.000 | | | | | | n (Samp) | 212 | 47 | 212 | 52 | 212 | 25 | | | | | | n (Pat) | 85 | 47 | 85 | 52 | 85 | 25 | | | | | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.68 | 0.043 | 249 | 53 | 0.000 | | 24 hours | 0.66 | 0.041 | 249 | 62 | 0.000 | | 48 hours | 0.60 | 0.060 | 249 | 27 | 0.100 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.68 | 0.067 | 441 | 20 | 0.008 | | 24 hours | 0.69 | 0.059 | 441 | 26 | 0.001 | | 48 hours | 0.68 | 0.080 | 441 | 14 | 0.021 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.70 | 0.045 | 212 | 47 | 0.000 | | 24 hours | 0.65 | 0.045 | 212 | 52 | 0.001 | | 48 hours | 0.61 | 0.063 | 212 | 25 | 0.072 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% CI of OR | | |----------------------|-----------------|------|------|----------|-----|--------------|-----| | 0 hours | 22.9 | 72% | 64% | 1 | | | | | | 18.1 | 81% | 46% | 2 | 1.0 | 0.5 | 2.0 | | | 12.7 | 91% | 27% | 3 | 3.9 | 2.4 | 6.4 | | | 25.4 | 60% | 70% | 4 | 4.7 | 2.9 | 7.6 | | | 32.1 | 36% | 81% | | | | | | | 49.5 | 15% | 90% | | | | | | 24 hours | 21.4 | 71% | 57% | 1 | l | | I | |----------|------|-----|-----|---|-----|-----|-----| | | 17.6 | 81% | 45% | 2 | 2.2 | 1.2 | 3.7 | | | 12.8 | 90% | 28% | 3 | 4.1 | 2.5 | 6.6 | | | 25.4 | 47% | 70% | 4 | 5.3 | 3.3 | 8.4 | | | 32.1 | 35% | 81% | | | | | | | 49.5 | 23% | 90% | | | | | | 48 hours | 17.8 | 70% | 46% | 1 | | | | | | 12.3 | 81% | 25% | 2 | 0.5 | 0.2 | 1.4 | | | 8.5 | 93% | 13% | 3 | 1.4 | 0.7 | 2.6 | | | 25.4 | 48% | 70% | 4 | 1.8 | 1.0 | 3.2 | | | 32.1 | 30% | 81% | | | | | | | 49.5 | 19% | 90% | | | | | sCr only | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR |
----------------------|-----------------|------|------|----------|-----|-------|---------| | 0 hours | 25.4 | 70% | 66% | 1 | | | | | | 22.9 | 80% | 58% | 2 | 3.1 | 0.2 | 43.1 | | | 14.3 | 90% | 31% | 3 | 8.5 | 0.9 | 80.1 | | | 27.7 | 65% | 71% | 4 | 8.4 | 0.9 | 79.3 | | | 34.9 | 30% | 80% | | | | | | | 53.4 | 10% | 90% | | | | | | 24 hours | 20.6 | 73% | 49% | 1 | | | | | | 18.7 | 81% | 44% | 2 | 1.7 | 0.6 | 5.0 | | | 10.9 | 92% | 17% | 3 | 1.3 | 0.4 | 4.3 | | | 27.7 | 54% | 71% | 4 | 5.1 | 2.2 | 11.7 | | | 34.9 | 50% | 80% | | | | | | | 53.4 | 27% | 90% | | | | | | 48 hours | 26.4 | 71% | 68% | 1 | | | | | | 21 | 86% | 51% | 2 | 2.0 | 0.1 | 39.2 | | | 17.6 | 93% | 41% | 3 | 6.2 | 0.6 | 63.5 | | | 27.7 | 50% | 71% | 4 | 5.1 | 0.5 | 55.9 | | | 34.9 | 29% | 80% | | | | | | | 53.4 | 14% | 90% | | | | | | | Cutoff | | | | | | | | |----------------------|--------|------|------|----------|-----|-------|--------------|--| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | 95% CI of OR | | | 0 hours | 23.3 | 70% | 65% | 1 | | | | | | | 19 | 81% | 47% | 2 | 1.2 | 0.5 | 2.6 | | | | 12.7 | 91% | 25% | 3 | 3.2 | 1.8 | 5.9 | | | | 24.9 | 62% | 70% | 4 | 6.0 | 3.4 | 10.6 | | | | 30.3 | 43% | 80% | | | | | | | | 43.7 | 26% | 90% | | | | | | | 24 hours | 21.1 | 71% | 56% | 1 | | | | | | | 17.6 | 81% | 43% | 2 | 1.4 | 0.7 | 2.6 | | | | 12.8 | 90% | 26% | 3 | 3.5 | 2.1 | 5.8 | | | | 24.9 | 48% | 70% | 4 | 4.7 | 2.8 | 7.7 | | | | 30.3 | 37% | 80% | | | | | | | | 43.7 | 21% | 90% | | | | | | | 48 hours | 17.8 | 72% | 44% | 1 | | | | | | | 15 | 80% | 35% | 2 | 0.8 | 0.3 | 2.0 | | | | 8.77 | 92% | 13% | 3 | 1.2 | 0.6 | 2.7 | | | | 24.9 | 48% | 70% | 4 | 2.2 | 1.1 | 4.2 | | | | 30.3 | 36% | 80% | | | | | | | | 43.7 | 24% | 90% | | | | | | #### Midkine sCr or UO | | 0 hr prior to A | AKI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|-----------------|-----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 0.056 | 0.082 | 0.056 | 0.097 | 0.056 | 0.108 | | average | 0.240 | 0.156 | 0.240 | 0.286 | 0.240 | 0.395 | | stdev | 0.855 | 0.200 | 0.855 | 0.630 | 0.855 | 1.018 | | p (t-test) | | 0.554 | | 0.733 | | 0.450 | | min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | max | 8.902 | 0.923 | 8.902 | 4.142 | 8.902 | 4.857 | | n (Samp) | 120 | 37 | 120 | 48 | 120 | 22 | | n (Pat) | 67 | 37 | 67 | 48 | 67 | 22 | sCr only | | 0 hr prior to A | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|-----------------|----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 0.077 | 0.118 | 0.077 | 0.129 | 0.077 | 0.105 | | | average | 0.228 | 0.393 | 0.228 | 0.455 | 0.228 | 0.255 | | | stdev | 0.695 | 0.820 | 0.695 | 0.940 | 0.695 | 0.281 | | | p (t-test) | | 0.393 | | 0.174 | | 0.897 | | | min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.003 | | | max | 8.902 | 3.139 | 8.902 | 4.142 | 8.902 | 0.817 | | | n (Samp) | 242 | 14 | 242 | 20 | 242 | 11 | | | n (Pat) | 116 | 14 | 116 | 20 | 116 | 11 | | UO only | • | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 0.063 | 0.111 | 0.063 | 0.107 | 0.063 | 0.105 | | average | 0.273 | 0.176 | 0.273 | 0.225 | 0.273 | 0.360 | | stdev | 0.923 | 0.204 | 0.923 | 0.296 | 0.923 | 1.039 | | p (t-test) | | 0.557 | | 0.741 | | 0.701 | | min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | max | 8.902 | 0.923 | 8.902 | 1.238 | 8.902 | 4.857 | | n (Samp) | 98 | 32 | 98 | 43 | 98 | 21 | | n (Pat) | 51 | 32 | 51 | 43 | 51 | 21 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.57 | 0.055 | 120 | 37 | 0.237 | | 24 hours | 0.62 | 0.049 | 120 | 48 | 0.013 | | 48 hours | 0.65 | 0.068 | 120 | 22 | 0.032 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.54 | 0.081 | 242 | 14 | 0.642 | | 24 hours | 0.63 | 0.069 | 242 | 20 | 0.057 | | 48 hours | 0.63 | 0.092 | 242 | 11 | 0.158 | UO only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | р | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.58 | 0.060 | 98 | 32 | 0.160 | | 24 hours | 0.60 | 0.053 | 98 | 43 | 0.063 | | 48 hours | 0.56 | 0.071 | 98 | 21 | 0.362 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% (| I of OR | |----------------------|-----------------|------|------|----------|-----|-------|---------| | 0 hours | 0.0373657 | 70% | 44% | 1 | | | | | | 0.0157077 | 81% | 28% | 2 | 1.7 | 0.8 | 3.2 | | | 0.0016104 | 92% | 20% | 3 | 2.8 | 1.5 | 5.1 | | | 0.1443816 | 35% | 70% | 4 | 1.6 | 0.8 | 3.1 | | | 0.2485795 | 16% | 80% | | | | | | | 0.4342297 | 14% | 90% | | | | | | 24 hours | 0.0581948 | 71% | 52% | 1 | | | | |----------|-----------|-----|-----|---|-----|-----|------| | | 0.0422102 | 81% | 47% | 2 | 1.4 | 0.7 | 2.5 | | | 0.0058384 | 92% | 24% | 3 | 3.8 | 2.2 | 6.3 | | | 0.1443816 | 40% | 70% | 4 | 2.5 | 1.4 | 4.3 | | | 0.2485795 | 29% | 80% | | | | | | | 0.4342297 | 13% | 90% | | | | | | 48 hours | 0.0631003 | 73% | 53% | 1 | | | | | | 0.056067 | 82% | 51% | 2 | 2.7 | 0.6 | 11.9 | | | 0.0404793 | 91% | 45% | 3 | 5.7 | 1.5 | 21.7 | | | 0.1443816 | 32% | 70% | 4 | 3.3 | 0.8 | 13.8 | | | 0.2485795 | 23% | 80% | | | | | | | 0.4342297 | 23% | 90% | | | | | sCr only | ber only | | | | | | | | |----------------------|-----------------|------|------|----------|-----|-----------------|---------| | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 0.023441 | 71% | 26% | 1 | | | | | | 0.0140548 | 86% | 23% | 2 | 0.7 | 0.2 | 2.5 | | | 0.0001464 | 93% | 0% | 3 | 0.2 | 0.0 | 2.9 | | | 0.1555932 | 50% | 70% | 4 | 1.6 | 0.6 | 3.8 | | | 0.2771893 | 29% | 80% | | | | | | | 0.4620882 | 21% | 90% | | | | | | 24 hours | 0.0741531 | 70% | 49% | 1 | | | | | | 0.0704339 | 80% | 48% | 2 | 2.6 | 0.6 | 10.8 | | | 0.0581948 | 90% | 43% | 3 | 3.2 | 0.8 | 12.6 | | | 0.1555932 | 45% | 70% | 4 | 3.7 | 1.0 | 14.1 | | | 0.2771893 | 35% | 80% | | | | | | | 0.4620882 | 15% | 90% | | | | | | 48 hours | 0.0704339 | 73% | 48% | 1 | | | | | | 0.0634663 | 82% | 46% | 2 | 3.1 | 0.2 | 45.1 | | | 0.0486198 | 91% | 39% | 3 | 3.1 | 0.2 | 45.1 | | | 0.1555932 | 45% | 70% | 4 | 4.1 | 0.3 | 51.1 | | | 0.2771893 | 27% | 80% | | | , in the second | | | | 0.4620882 | 27% | 90% | | | | | | | Cutoff | | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|--------------|--| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% (| 95% CI of OR | | | 0 hours | 0.0608593 | 72% | 49% | 1 | | | | | | | 0.0404793 | 81% | 42% | 2 | 1.2 | 0.5 | 2.8 | | | | 0.0056671 | 91% | 20% | 3 | 4.8 | 2.3 | 9.7 | | | | 0.2039195 | 22% | 70% | 4 | 1.2 | 0.5 | 2.8 | | | | 0.3942587 | 16% | 81% | | | | | | | | 0.4986167 | 9% | 91% | | | | | | | 24 hours | 0.0550031 | 72% | 46% | 1 | | | | | | | 0.0404793 | 81% | 42% | 2 | 2.1 | 1.0 | 4.4 | | | | 0.0137202 | 91% | 24% | 3 | 6.4 | 3.2 | 12.6 | | | | 0.2039195 | 28% | 70% | 4 | 2.6 | 1.3 | 5.4 | | | | 0.3942587 | 14% | 81% | | | | | | | | 0.4986167 | 9% | 91% | | | | | | | 48 hours | 0.0608593 | 71% | 49% | 1 | | | | | | | 0.0417811 | 81% | 42% | 2 | 1.7 | 0.5 | 5.7 | | | | 0.0056671 | 90% | 20% | 3 | 4.3 | 1.6 | 12.0 | | | | 0.2039195 | 29% | 70% | 4 | 1.0 | 0.2 | 4.1 | | | | 0.3942587 | 14% | 81% | | | | | | | | 0.4986167 | 10% | 91% | | | | | | #### Serum amyloid P-component sCr or UO | | 0 hr prior to A | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|-----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 1.447 | 2.273 | 1.447 | 2.398 | 1.447 | 2.171 | | average | 4.827 | 5.940 | 4.827 | 7.802 | 4.827 | 4.854 | | stdev | 10.143 | 8.522 | 10.143 | 20.452 | 10.143 | 6.028 | | p (t-test) | | 0.499 | | 0.203 | | 0.990 | | min | 0.089 | 0.038 | 0.089 | 0.129 | 0.089 | 0.269 | | max | 58.307 | 34.528 | 58.307 | 152.000 | 58.307 | 21.775 | | n (Samp) | 114 | 50 | 114 | 58 | 114 | 25 | | n (Pat) | 96 | 50 | 96 | 58 | 96 | 25 | sCr only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 1.804 | 3.185 | 1.804 | 7.024 | 1.804 | 2.919 | | average | 5.624 | 4.863 | 5.624 | 8.986 | 5.624 | 5.778 | | stdev | 12.561 | 5.755 | 12.561 | 10.583 | 12.561 | 6.871 | | p (t-test) | | 0.810 | | 0.215 | | 0.964 | | min | 0.025 | 0.038 | 0.025 | 0.143 | 0.025 | 0.226 | | max | 152.000 | 21.427 | 152.000 | 37.076 | 152.000 | 21.775 | | n (Samp) | 253 | 16 | 253 | 23 | 253 | 14 | | n (Pat) | 157 | 16 | 157 | 23 | 157 | 14 | UO only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior to | ~ | | | |------------|------------------------|----------|----------------|-----------|----------------|----------|--|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | | median | 1.543 | 2.517 | 1.543 | 2.398 | 1.543 | 3.388 | | | | average | 5.100 | 6.629 | 5.100 | 9.575 | 5.100 | 6.648 | | | | stdev | 10.027 | 8.785 | 10.027 | 23.142 | 10.027 | 10.167 | | | | p (t-test) | | 0.382 | | 0.099 | | 0.513 | | | | min | 0.089 | 0.038 | 0.089 | 0.129 | 0.089 | 0.320 | | | | max | 58.307 | 34.528 | 58.307 | 152.000 | 58.307
| 44.971 | | | | n (Samp) | 103 | 44 | 103 | 48 | 103 | 22 | | | | n (Pat) | 82 | 44 | 82 | 48 | 82 | 22 | | | sCr or UO | Time prior | AUC | SE | nCohort 1 | nCohort 2 | р | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.58 | 0.049 | 114 | 50 | 0.129 | | 24 hours | 0.61 | 0.046 | 114 | 58 | 0.016 | | 48 hours | 0.61 | 0.065 | 114 | 25 | 0.077 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.52 | 0.075 | 253 | 16 | 0.778 | | 24 hours | 0.63 | 0.065 | 253 | 23 | 0.040 | | 48 hours | 0.56 | 0.081 | 253 | 14 | 0.467 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.58 | 0.052 | 103 | 44 | 0.108 | | 24 hours | 0.61 | 0.050 | 103 | 48 | 0.029 | | 48 hours | 0.64 | 0.069 | 103 | 22 | 0.041 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | |----------------------|-----------------|------|------|----------|-----|-------|---------| | 0 hours | 0.9853183 | 70% | 43% | 1 | | | | | | 0.4746547 | 80% | 20% | 2 | 0.8 | 0.5 | 1.3 | | | 0.2212973 | 92% | 7% | 3 | 1.4 | 0.9 | 2.2 | | | 2.7653229 | 44% | 70% | 4 | 1.7 | 1.1 | 2.7 | | | 4.2737938 | 32% | 81% | | | | | | | 11.50007 | 16% | 90% | | | | | | 24 hours | 1.0844797 | 71% | 46% | 1 | | | | |----------|-----------|-----|-----|---|-----|-----|------| | | 0.5885975 | 81% | 27% | 2 | 0.9 | 0.6 | 1.4 | | | 0.4557392 | 91% | 18% | 3 | 1.1 | 0.7 | 1.7 | | | 2.7653229 | 47% | 70% | 4 | 2.7 | 1.8 | 4.1 | | | 4.2737938 | 40% | 81% | | | | | | | 11.50007 | 16% | 90% | | | | | | 48 hours | 1.1846337 | 72% | 47% | 1 | | | | | | 0.9490725 | 80% | 43% | 2 | 4.7 | 1.2 | 18.4 | | | 0.5885975 | 92% | 27% | 3 | 2.7 | 0.6 | 11.9 | | | 2.7653229 | 48% | 70% | 4 | 6.4 | 1.7 | 23.9 | | | 4.2737938 | 32% | 81% | | | | | | | 11.50007 | 12% | 90% | Ü | | | · | sCr only | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | |----------------------|-----------------|------|------|----------|-----|-------|---------| | 0 hours | 0.4557392 | 75% | 13% | 1 | | | | | | 0.3460298 | 81% | 11% | 2 | 0.2 | 0.0 | 2.1 | | | 0.037612 | 94% | 0% | 3 | 1.0 | 0.4 | 2.3 | | | 4.10741 | 38% | 70% | 4 | 1.0 | 0.4 | 2.3 | | | 6.5771402 | 31% | 80% | | | | | | | 13.062464 | 6% | 90% | | | | | | 24 hours | 1.0374191 | 74% | 34% | 1 | | | | | | 0.9853183 | 83% | 33% | 2 | 1.0 | 0.4 | 2.8 | | | 0.3715084 | 91% | 11% | 3 | 0.7 | 0.2 | 2.5 | | | 4.10741 | 57% | 70% | 4 | 3.4 | 1.7 | 7.0 | | | 6.5771402 | 52% | 80% | | | | | | | 13.062464 | 22% | 90% | | | | | | 48 hours | 1.028192 | 71% | 34% | 1 | | | | | | 0.6630833 | 86% | 23% | 2 | 0.6 | 0.1 | 3.5 | | | 0.2564023 | 93% | 7% | 3 | 1.3 | 0.4 | 4.5 | | | 4.10741 | 43% | 70% | 4 | 1.7 | 0.6 | 5.1 | | | 6.5771402 | 29% | 80% | | | | | | | 13.062464 | 14% | 90% | | | | | | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 1.1846337 | 70% | 46% | 1 | | | | | | 0.5885975 | 82% | 26% | 2 | 1.0 | 0.5 | 1.7 | | | 0.2212973 | 91% | 7% | 3 | 1.4 | 0.8 | 2.5 | | | 3.1950229 | 43% | 71% | 4 | 1.8 | 1.1 | 3.1 | | | 6.3585829 | 30% | 81% | | | | | | | 12.688918 | 20% | 90% | | | | | | 24 hours | 1.1846337 | 71% | 46% | 1 | | | | | | 0.5885975 | 81% | 26% | 2 | 0.8 | 0.5 | 1.5 | | | 0.513498 | 92% | 23% | 3 | 1.2 | 0.8 | 2.1 | | | 3.1950229 | 48% | 71% | 4 | 2.2 | 1.4 | 3.5 | | | 6.3585829 | 33% | 81% | | | | | | | 12.688918 | 17% | 90% | | | | | | 48 hours | 1.4165129 | 73% | 48% | 1 | | | | | | 1.1846337 | 82% | 46% | 2 | 3.5 | 0.8 | 14.9 | | | 0.8267137 | 91% | 36% | 3 | 3.5 | 0.8 | 14.9 | | | 3.1950229 | 55% | 71% | 4 | 4.8 | 1.2 | 19.1 | | | 6.3585829 | 27% | 81% | | | | | | | 12.688918 | 14% | 90% | | | | | FIGURE 2 Fatty acid binding protein, heart | eCr. | or | IIO | |------|----|-----| | | 0 hr prior to A | KI stage | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | | |------------|-----------------|----------|----------------|-----------|--------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 55.900 | 150.000 | 55.900 | 155.500 | 55.900 | 127.000 | | | average | 410.197 | 688.950 | 410.197 | 1158.180 | 410.197 | 639.412 | | | stdev | 1121.958 | 1612.525 | 1121.958 | 2840.633 | 1121.958 | 1339.887 | | | p (t-test) | | 0.225 | | 0.001 | | 0.400 | | | min | 0.268 | 0.689 | 0.268 | 4.070 | 0.268 | 4.140 | | | max | 8087.000 | 8087.000 | 8087.000 | 14771.000 | 8087.000 | 5160.000 | | | n (Samp) | 419 | 27 | 419 | 36 | 419 | 18 | | | n (Pat) | 164 | 27 | 164 | 36 | 164 | 18 | | sCr only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|------------------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 64.550 | 412.000 | 64.550 | 93.900 | 64.550 | 128.000 | | average | 502.660 | 1851.436 | 502.660 | 2756.591 | 502.660 | 2006.600 | | stdev | 1333.784 | 3492.966 | 1333.784 | 5207.291 | 1333.784 | 3270.907 | | p (t-test) | | 0.028 | | 0.000 | | 0.004 | | min | 0.268 | 5.180 | 0.268 | 4.070 | 0.268 | 10.700 | | max | 13231.000 | 8087.000 | 13231.000 | 14771.000 | 13231.000 | 8087.000 | | n (Samp) | 518 | 5 | 518 | 9 | 518 | 7 | | n (Pat) | 199 | 5 | 199 | 9 | 199 | 7 | UO only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 64.000 | 157.500 | 64.000 | 237.500 | 64.000 | 158.000 | | average | 427.862 | 474.211 | 427.862 | 664.106 | 427.862 | 431.489 | | stdev | 1179.546 | 667.924 | 1179.546 | 1106.648 | 1179.546 | 757.709 | | p (t-test) | | 0.843 | | 0.291 | | 0.990 | | min | 0.371 | 0.689 | 0.371 | 6.340 | 0.371 | 4.140 | | max | 8087.000 | 3040.000 | 8087.000 | 4420.000 | 8087.000 | 3000.000 | | n (Samp) | 352 | 26 | 352 | 30 | 352 | 16 | | n (Pat) | 133 | 26 | 133 | 30 | 133 | 16 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.62 | 0.059 | 419 | 27 | 0.045 | | 24 hours | 0.63 | 0.052 | 419 | 36 | 0.014 | | 48 hours | 0.58 | 0.072 | 419 | 18 | 0.239 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.68 | 0.133 | 518 | 5 | 0.184 | | 24 hours | 0.60 | 0.101 | 518 | 9 | 0.320 | | 48 hours | 0.64 | 0.114 | 518 | 7 | 0.203 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.63 | 0.060 | 352 | 26 | 0.035 | | 24 hours | 0.64 | 0.056 | 352 | 30 | 0.011 | | 48 hours | 0.59 | 0.076 | 352 | 16 | 0.217 | | | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-----|----------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% | CI of OR | | 0 hours | 41.5 | 70% | 48% | 1 | | | | | | 20.4 | 81% | 37% | 2 | 2.0 | 0.7 | 5.6 | | | 5.47 | 93% | 12% | 3 | 2.8 | 1.1 | 7.1 | | | 170 | 41% | 70% | 4 | 3.5 | 1.5 | 8.6 | | | 300 | 37% | 80% | | | | | 48 hours | | 1120 | 11% | 90% | | | 1 | 1 | |----------------------|--------|------|------|----------|-----|-----|---------| | 24 hours | 33.3 | 72% | 44% | 1 | | | | | | 29 | 81% | 42% | 2 | 1.2 | 0.6 | 2.2 | | | 8.2 | 92% | 17% | 3 | 1.3 | 0.7 | 2.5 | | | 170 | 50% | 70% | 4 | 2.7 | 1.6 | 4.4 | | | 300 | 28% | 80% | | | | | | | 1120 | 19% | 90% | | | | | | 48 hours | 39.5 | 72% | 47% | 1 | | | | | | 11.1 | 83% | 24% | 2 | 1.0 | 0.4 | 2.8 | | | 4.54 | 94% | 10% | 3 | 1.0 | 0.4 | 2.8 | | | 170 | 39% | 70% | 4 | 1.5 | 0.6 | 3.6 | | | 300 | 28% | 80% | | | | | | | 1120 | 11% | 90% | | | | | | r only | | | | | | | | | | Cutoff | | | | | | | | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% | CI of O | | 0 hours | 163 | 80% | 66% | 1 | | | | | | 163 | 80% | 66% | 2 | 0.0 | 0.0 | na | | | 5.13 | 100% | 10% | 3 | 1.0 | 0.0 | 51.5 | | | 209 | 60% | 70% | 4 | 3.0 | 0.2 | 42.5 | | | 377 | 60% | 80% | | | | | | | 1260 | 20% | 90% | | | | | | 24 hours | 33.3 | 78% | 41% | 1 | | | | | | 8.2 | 89% | 15% | 2 | 1.0 | 0.1 | 7.3 | | | 3.98 | 100% | 8% | 3 | 0.5 | 0.0 | 9.6 | | | 209 | 44% | 70% | 4 | 2.0 | 0.4 | 9.0 | | | 377 | 44% | 80% | | | | | | | 1260 | 22% | 90% | | | | | | 48 hours | 44.6 | 71% | 46% | 1 | | | | | | 38.2 | 86% | 44% | 2 | 2.0 | 0.1 | 39.3 | | | 10.4 | 100% | 20% | 3 | 1.0 | 0.0 | 51.9 | | | 209 | 43% | 70% | 4 | 3.0 | 0.2 | 42.5 | | | 377 | 43% | 80% | | | | | | | 1260 | 29% | 90% | | | | | | O only | | | | | | | | | | Cutoff | | | | | | | | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% | CI of O | | 0 hours | 41.5 | 73% | 45% | 1 | | | | | | 31.6 | 81% | 40% | 2 | 3.1 | 0.8 | 12.0 | | | 15 | 92% | 28% | 3 | 3.7 | 1.0 | 13.6 | | | 189 | 46% | 70% | 4 | 6.0 | 1.8 | 20.3 | | | 301 | 42% | 80% | | | | ļ | | | 1120 | 8% | 90% | | | | | | 24 hours | 60.6 | 70% | 49% | 1 | | | | | | 31.6 | 80% | 40% | 2 | 1.5 | 0.6 | 3.6 | | | 11.5 | 90% | 22% | 3 | 1.5 | 0.6 | 3.6 | | | 189 | 57% | 70% | 4 | 3.9 | 2.0 | 7.6 | | | 301 | 30% | 80% | | | | | | | | | | | | | | 1120 39.5 23.7 4.44 189 301 1120 20% 75% 81% 94% 38% 31% 6% 90% 44% 36% 9% 70% 80% 90% 1 2 3 4 1.0 1.3 2.1 0.3 0.4 0.7 3.9 4.4 5.8 #### Hepatocyte growth factor sCr or UO | | 0 hr prior to AKI stage | | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | | | |------------
-------------------------|----------|----------------|-----------|--------------------------|----------|--|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | | median | 391.184 | 648.731 | 391.184 | 747.384 | 391.184 | 809.087 | | | | average | 584.363 | 849.137 | 584.363 | 1010.545 | 584.363 | 767.409 | | | | stdev | 654.835 | 621.381 | 654.835 | 1355.310 | 654.835 | 500.795 | | | | p (t-test) | | 0.064 | | 0.003 | | 0.247 | | | | min | 14.776 | 22.466 | 14.776 | 32.253 | 14.776 | 41.886 | | | | max | 5191.176 | 2726.014 | 5191.176 | 7839.221 | 5191.176 | 1568.985 | | | | n (Samp) | 246 | 23 | 246 | 35 | 246 | 18 | | | | n (Pat) | 159 | 23 | 159 | 35 | 159 | 18 | | | sCr only | | 0 hr prior toΛKI stage | | 24 hr prior to | \KI stage | 48 hr prior toΛKI stage | | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 446.622 | 601.477 | 446.622 | 565.787 | 446.622 | 828.465 | | | average | 661.802 | 601.477 | 661.802 | 753.335 | 661.802 | 774.947 | | | stdev | 762.897 | 66.826 | 762.897 | 613.424 | 762.897 | 503.594 | | | p (t-test) | | 0.911 | | 0.737 | | 0.697 | | | min | 14.776 | 554.224 | 14.776 | 86.357 | 14.776 | 64.024 | | | max | 7839.221 | 648.731 | 7839.221 | 1915.338 | 7839.221 | 1646.962 | | | n (Samp) | 318 | 2 | 318 | 8 | 318 | 7 | | | n (Pat) | 188 | 2 | 188 | 8 | 188 | 7 | | UO only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 401.533 | 750.965 | 401.533 | 742.061 | 401.533 | 809.087 | | average | 570.796 | 869.825 | 570.796 | 1034.799 | 570.796 | 871.272 | | stdev | 580.161 | 616.779 | 580.161 | 1437.159 | 580.161 | 561.858 | | p (t-test) | | 0.020 | | 0.001 | | 0.047 | | min | 14.776 | 22.466 | 14.776 | 32.253 | 14.776 | 41.886 | | max | 5191.176 | 2726.014 | 5191.176 | 7839.221 | 5191.176 | 1915.338 | | n (Samp) | 212 | 23 | 212 | 30 | 212 | 16 | | n (Pat) | 132 | 23 | 132 | 30 | 132 | 16 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.68 | 0.064 | 246 | 23 | 0.004 | | 24 hours | 0.65 | 0.053 | 246 | 35 | 0.004 | | 48 hours | 0.64 | 0.073 | 246 | 18 | 0.058 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.61 | 0.213 | 318 | 2 | 0.595 | | 24 hours | 0.58 | 0.107 | 318 | 8 | 0.443 | | 48 hours | 0.62 | 0.115 | 318 | 7 | 0.304 | UO only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.69 | 0.064 | 212 | 23 | 0.004 | | 24 hours | 0.65 | 0.057 | 212 | 30 | 0.008 | | 48 hours | 0.68 | 0.076 | 212 | 16 | 0.019 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% | CI of OR | |----------------------|-----------------|------|------|----------|-----|-----|----------| | 0 hours | 471.99234 | 74% | 60% | 1 | | | | | | 401.9307 | 83% | 54% | 2 | 1.0 | 0.1 | 7.5 | | | 361.16203 | 91% | 47% | 3 | 6.4 | 1.9 | 21.7 | | | 634.77395 | 57% | 70% | 4 | 4.3 | 1.2 | 15.7 | | | 871.13405 | 30% | 80% | | | | | | | 1274.9436 | 22% | 90% | | · | | · | | 24 hours | 458.31139 | 71% | 59% | 1 | | | | |----------|-----------|-----|-----|---|-----|-----|-----| | | 309.24101 | 80% | 41% | 2 | 1.5 | 0.6 | 3.7 | | | 181.96421 | 91% | 23% | 3 | 3.4 | 1.7 | 7.0 | | | 634.77395 | 54% | 70% | 4 | 3.7 | 1.8 | 7.5 | | | 871.13405 | 34% | 80% | | | | | | | 1274.9436 | 20% | 90% | | | | | | 48 hours | 433.14494 | 72% | 56% | 1 | | | | | | 174.1918 | 83% | 22% | 2 | 0.2 | 0.0 | 2.9 | | | 63.729059 | 94% | 6% | 3 | 1.0 | 0.4 | 2.8 | | | 634.77395 | 56% | 70% | 4 | 2.4 | 1.1 | 5.3 | | | 871.13405 | 50% | 80% | | | | | | | 1274.9436 | 22% | 90% | | | | | sCr only | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% | CI of OR | |----------------------|-----------------|------|------|----------|-----|-----|----------| | 0 hours | 547.65274 | 100% | 58% | 1 | | | | | | 547.65274 | 100% | 58% | 2 | na | na | na | | | 547.65274 | 100% | 58% | 3 | na | na | na | | | 763.54383 | 0% | 70% | 4 | na | na | na | | | 994.85278 | 0% | 80% | | | | | | | 1339.5034 | 0% | 90% | | | | | | 24 hours | 458.96808 | 75% | 51% | 1 | | | | | | 236.40802 | 88% | 28% | 2 | 1.0 | 0.0 | 52.3 | | | 85.564359 | 100% | 9% | 3 | 4.2 | 0.3 | 50.6 | | | 763.54383 | 38% | 70% | 4 | 2.0 | 0.1 | 39.7 | | | 994.85278 | 25% | 80% | | | | | | | 1339.5034 | 25% | 90% | | | | | | 48 hours | 606.00549 | 71% | 63% | 1 | | | | | | 373.50372 | 86% | 41% | 2 | 1.0 | 0.0 | 52.9 | | | 63.729059 | 100% | 6% | 3 | 2.0 | 0.1 | 40.2 | | | 763.54383 | 57% | 70% | 4 | 3.0 | 0.2 | 43.5 | | | 994.85278 | 14% | 80% | | | | | | | 1339.5034 | 14% | 90% | | | | | | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|----------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% (| CL of OR | | 0 hours | 471.99234 | 74% | 58% | 1 | | | | | | 405.06523 | 83% | 51% | 2 | 1.5 | 0.3 | 8.2 | | | 361.16203 | 91% | 43% | 3 | 5.0 | 1.4 | 18.0 | | | 664.06712 | 52% | 70% | 4 | 5.0 | 1.4 | 18.0 | | | 850.96347 | 35% | 80% | | | | | | | 1209.6432 | 22% | 90% | | | | | | 24 hours | 458.31139 | 70% | 56% | 1 | | | | | | 387.70579 | 80% | 46% | 2 | 2.1 | 0.7 | 5.9 | | | 254.75162 | 90% | 32% | 3 | 3.8 | 1.5 | 9.6 | | | 664.06712 | 53% | 70% | 4 | 4.2 | 1.7 | 10.3 | | | 850.96347 | 33% | 80% | | | | | | | 1209.6432 | 17% | 90% | | | | | | 48 hours | 468.66836 | 75% | 57% | 1 | | | | | | 421.70745 | 81% | 53% | 2 | 0.0 | 0.0 | na | | | 156.4651 | 94% | 20% | 3 | 1.7 | 0.6 | 5.3 | | | 664.06712 | 56% | 70% | 4 | 2.9 | 1.1 | 7.8 | | | 850.96347 | 50% | 80% | | | | | | | 1209.6432 | 31% | 90% | | • | | | #### Interleukin-16 sCr or UO | | 0 hr prior to A | AKI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|-----------------|-----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 8.510 | 9.890 | 8.510 | 11.600 | 8.510 | 14.650 | | average | 38.048 | 34.959 | 38.048 | 85.756 | 38.048 | 27.446 | | stdev | 110.313 | 80.369 | 110.313 | 204.858 | 110.313 | 52.785 | | p (t-test) | | 0.886 | | 0.023 | | 0.685 | | min | 0.265 | 0.265 | 0.265 | 0.265 | 0.265 | 0.265 | | max | 1100.000 | 323.000 | 1100.000 | 1010.000 | 1100.000 | 227.000 | | n (Samp) | 419 | 27 | 419 | 36 | 419 | 18 | | n (Pat) | 164 | 27 | 164 | 36 | 164 | 18 | sCr only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 8.665 | 33.900 | 8.665 | 20.900 | 8.665 | 17.900 | | average | 41.200 | 292.390 | 41.200 | 222.552 | 41.200 | 71.981 | | stdev | 117.455 | 459.575 | 117.455 | 311.611 | 117.455 | 87.200 | | p (t-test) | | 0.000 | | 0.000 | | 0.490 | | min | 0.265 | 5.250 | 0.265 | 0.265 | 0.265 | 0.265 | | max | 1100.000 | 1080.000 | 1100.000 | 857.000 | 1100.000 | 227.000 | | n (Samp) | 518 | 5 | 518 | 9 | 518 | 7 | | n (Pat) | 199 | 5 | 199 | 9 | 199 | 7 | UO only | - | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 8.760 | 10.745 | 8.760 | 11.600 | 8.760 | 16.800 | | average | 41.162 | 24.783 | 41.162 | 66.621 | 41.162 | 26.572 | | stdev | 110.559 | 57.124 | 110.559 | 195.995 | 110.559 | 54.657 | | p (t-test) | | 0.455 | | 0.262 | | 0.600 | | min | 0.265 | 0.265 | 0.265 | 0.265 | 0.265 | 0.265 | | max | 891.000 | 294.000 | 891.000 | 1010.000 | 891.000 | 229.000 | | n (Samp) | 352 | 26 | 352 | 30 | 352 | 16 | | n (Pat) | 133 | 26 | 133 | 30 | 133 | 16 | sCr or UO | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.52 | 0.058 | 419 | 27 | 0.688 | | 24 hours | 0.55 | 0.051 | 419 | 36 | 0.330 | | 48 hours | 0.57 | 0.072 | 419 | 18 | 0.324 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.78 | 0.123 | 518 | 5 | 0.025 | | 24 hours | 0.66 | 0.100 | 518 | 9 | 0.114 | | 48 hours | 0.70 | 0.111 | 518 | 7 | 0.069 | UO only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.51 | 0.059 | 352 | 26 | 0.847 | | 24 hours | 0.54 | 0.056 | 352 | 30 | 0.509 | | 48 hours | 0.57 | 0.076 | 352 | 16 | 0.347 | | | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-----|----------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% | CI of OR | | 0 hours | 5.16 | 70% | 33% | 1 | | | | | | 0 | 100% | 0% | 2 | 1.0 | 0.5 | 2.0 | | | 0 | 100% | 0% | 3 | 1.5 | 0.9 | 2.8 | | | 15.8 | 33% | 70% | 4 | 1.0 | 0.5 | 2.0 | | | 23.7 | 19% | 80% | | | | | | | 81.9 | 7% | 90% | | | | | | 24 hours | 4.72 | 72% | 32% | 1 | | 1 | | |----------|------|------|-----|---|-----|-----|-----| | | 0 | 100% | 0% | 2 | 3.2 | 1.6 | 6.4 | | | 0 | 100% | 0% | 3 | 2.9 | 1.4 | 5.9 | | | 15.8 | 39% | 70% | 4 | 2.3 | 1.1 | 4.9 | | | 23.7 | 19% | 80% | | | | | | | 81.9 | 19% | 90% | | | | | | 48 hours | 10.7 | 72% | 60% | 1 | | | | |
 0 | 100% | 0% | 2 | 0.0 | 0.0 | na | | | 0 | 100% | 0% | 3 | 1.6 | 0.8 | 3.2 | | | 15.8 | 50% | 70% | 4 | 1.0 | 0.4 | 2.3 | | | 23.7 | 17% | 80% | | | | | | | 81.9 | 6% | 90% | | | | | sCr only | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% | CI of OR | |----------------------|-----------------|------|------|----------|-----|------|----------| | 0 hours | 19.6 | 80% | 75% | Quartne | OR | 7570 | CI OI OI | | o hours | 19.6 | 80% | 75% | 2 | 20 | no | no | | | | | | _ | na | na | na | | | 5.2 | 100% | 34% | 3 | na | na | na | | | 17.4 | 80% | 71% | 4 | na | na | na | | | 24.7 | 60% | 80% | | | | | | | 85.9 | 40% | 90% | | | | | | 24 hours | 4.72 | 78% | 32% | 1 | | | | | | 0 | 100% | 0% | 2 | 0.5 | 0.0 | 9.6 | | | 0 | 100% | 0% | 3 | 0.5 | 0.0 | 9.6 | | | 17.4 | 56% | 71% | 4 | 2.5 | 0.6 | 10.3 | | | 24.7 | 44% | 80% | | | | | | | 85.9 | 44% | 90% | | | | | | 48 hours | 14.1 | 71% | 65% | 1 | | | | | | 13 | 86% | 63% | 2 | 0.0 | 0.0 | na | | | 0 | 100% | 0% | 3 | 3.0 | 0.2 | 42.9 | | | 17.4 | 57% | 71% | 4 | 3.0 | 0.2 | 42.5 | | | 24.7 | 43% | 80% | | | | | | | 85.9 | 29% | 90% | | | | | | , | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-----|----------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% | CI of OR | | 0 hours | 5.15 | 73% | 32% | 1 | | | | | | 0 | 100% | 0% | 2 | 0.8 | 0.4 | 1.7 | | | 0 | 100% | 0% | 3 | 1.7 | 1.0 | 3.1 | | | 17.4 | 31% | 70% | 4 | 0.8 | 0.4 | 1.7 | | | 25.3 | 15% | 80% | | | | | | 24 h over | 88.6 | 4% | 90% | | | | | | 24 hours | 5.27 | 70% | 33% | 1 | | | | | | 4.07 | 80% | 28% | 2 | 1.6 | 0.8 | 3.2 | | | 0 | 100% | 0% | 3 | 2.4 | 1.3 | 4.4 | | | 17.4 | 37% | 70% | 4 | 1.2 | 0.6 | 2.6 | | | 25.3 | 17% | 80% | | | | | | | 88.6 | 13% | 90% | | | | | | 48 hours | 10.7 | 75% | 59% | 1 | | | | | | 0 | 100% | 0% | 2 | 0.0 | 0.0 | na | | | 0 | 100% | 0% | 3 | 2.4 | 1.1 | 5.1 | | | 17.4 | 50% | 70% | 4 | 0.7 | 0.2 | 2.4 | | | 25.3 | 6% | 80% | | | | | | | 88.6 | 6% | 90% | | | | | #### Interleukin-2 sCr or UO | ber or e e | | | | | | | |------------|-----------------|-----------|----------------|-----------|----------------|-----------| | | 0 hr prior to A | AKI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 0.324 | 0.362 | 0.324 | 0.352 | 0.324 | 0.347 | | average | 1.190 | 1.248 | 1.190 | 1.139 | 1.190 | 1.206 | | stdev | 6.550 | 3.498 | 6.550 | 1.984 | 6.550 | 1.968 | | p (t-test) | | 0.967 | | 0.963 | | 0.992 | | min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | max | 96.860 | 17.085 | 96.860 | 9.984 | 96.860 | 7.061 | | n (Samp) | 247 | 23 | 247 | 35 | 247 | 18 | | n (Pat) | 159 | 23 | 159 | 35 | 159 | 18 | sCr only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 0.335 | 0.392 | 0.335 | 0.171 | 0.335 | 0.475 | | average | 1.162 | 0.392 | 1.162 | 0.657 | 1.162 | 1.661 | | stdev | 5.876 | 0.308 | 5.876 | 1.340 | 5.876 | 2.553 | | p (t-test) | | 0.853 | | 0.809 | | 0.823 | | min | 0.000 | 0.173 | 0.000 | 0.000 | 0.000 | 0.067 | | max | 96.860 | 0.610 | 96.860 | 3.946 | 96.860 | 7.061 | | n (Samp) | 319 | 2 | 319 | 8 | 319 | 7 | | n (Pat) | 188 | 2 | 188 | 8 | 188 | 7 | UO only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 0.341 | 0.362 | 0.341 | 0.469 | 0.341 | 0.315 | | average | 1.246 | 1.240 | 1.246 | 1.189 | 1.246 | 0.739 | | stdev | 6.996 | 3.499 | 6.996 | 2.044 | 6.996 | 1.310 | | p (t-test) | | 0.997 | | 0.965 | | 0.773 | | min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | max | 96.860 | 17.085 | 96.860 | 9.984 | 96.860 | 5.096 | | n (Samp) | 213 | 23 | 213 | 30 | 213 | 16 | | n (Pat) | 132 | 23 | 132 | 30 | 132 | 16 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.57 | 0.065 | 247 | 23 | 0.295 | | 24 hours | 0.58 | 0.053 | 247 | 35 | 0.131 | | 48 hours | 0.58 | 0.073 | 247 | 18 | 0.277 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.55 | 0.211 | 319 | 2 | 0.803 | | 24 hours | 0.43 | 0.097 | 319 | 8 | 0.451 | | 48 hours | 0.64 | 0.114 | 319 | 7 | 0.227 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.55 | 0.065 | 213 | 23 | 0.429 | | 24 hours | 0.61 | 0.058 | 213 | 30 | 0.057 | | 48 hours | 0.52 | 0.076 | 213 | 16 | 0.815 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% | CI of OR | |----------------------|-----------------|------|------|----------|-----|-----|----------| | 0 hours | 0.2957788 | 74% | 45% | 1 | | | | | | 0.1721567 | 83% | 36% | 2 | 2.1 | 0.7 | 5.9 | | | 0 | 100% | 0% | 3 | 2.5 | 0.9 | 6.7 | | | 0.5221122 | 35% | 70% | 4 | 2.4 | 0.9 | 6.6 | | | 0.66824 | 22% | 80% | | | | | | | 1.3590551 | 13% | 90% | | • | | | | 24 hours | 0.189991 | 71% | 37% | 1 | I | | | |----------|-----------|------|-----|---|-----|-----|------| | | 0.1007266 | 80% | 31% | 2 | 2.0 | 1.1 | 3.5 | | | 0 | 100% | 0% | 3 | 0.6 | 0.3 | 1.6 | | | 0.5221122 | 46% | 70% | 4 | 2.6 | 1.5 | 4.5 | | | 0.66824 | 40% | 80% | | | | | | | 1.3590551 | 20% | 90% | | | | | | 48 hours | 0.2893007 | 72% | 45% | 1 | | | | | | 0.1721567 | 83% | 36% | 2 | 6.5 | 0.6 | 68.1 | | | 0.0642177 | 94% | 28% | 3 | 6.5 | 0.6 | 68.1 | | | 0.5221122 | 28% | 70% | 4 | 5.2 | 0.5 | 58.6 | | | 0.66824 | 22% | 80% | | | | · | | | 1.3590551 | 22% | 90% | · | | | | sCr only | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% | CI of OR | |----------------------|-----------------|------|------|----------|-------|-------------------------------|----------| | 0 hours | 0.1721567 | 100% | 34% | 1 | | | | | | 0.1721567 | 100% | 34% | 2 | na | na | na | | | 0.1721567 | 100% | 34% | 3 | na | na | na | | | 0.5364781 | 50% | 71% | 4 | na | na | na | | | 0.7060623 | 0% | 80% | | | | | | | 1.8315249 | 0% | 90% | | | | | | 24 hours | 0.1009757 | 75% | 29% | 1 | 10 00 | | | | | 0.0217451 | 88% | 24% | 2 | 1.0 | 0.0 | 52.9 | | | 0 | 100% | 0% | 3 | 4.2 | 4.2 0.3 | 50.6 | | | 0.5364781 | 13% | 71% | 4 | 2.1 | 0.1 | 40.7 | | | 0.7060623 | 13% | 80% | | | | | | | 1.8315249 | 13% | 90% | | | | | | 48 hours | 0.3346316 | 71% | 50% | 1 | | 1.0 0.0
4.2 0.3
2.1 0.1 | | | | 0.1824273 | 86% | 35% | 2 | na | | na | | | 0.0642177 | 100% | 26% | 3 | na | na | na | | | 0.5364781 | 43% | 71% | 4 | na | na | na | | | 0.7060623 | 43% | 80% | | | | | | | 1.8315249 | 29% | 90% | | | | | | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|---|----------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% | CI of OR | | 0 hours | 0.2957788 | 74% | 44% | 1 | | | | | | 0.1767872 | 83% | 36% | 2 | 2.9 | 1.1 | 7.7 | | | 0 | 100% | 0% | 3 | 2.1 | 1.1
0.7
0.7
0.7
0.7
0.4
1.6 | 6.1 | | | 0.5328803 | 30% | 70% | 4 | 2.1 | 0.7 | 6.1 | | | 0.6729637 | 22% | 80% | | | | | | | 1.3590551 | 13% | 90% | | | | | | 24 hours | 0.2382322 | 70% | 38% | 1 | | | | | | 0.189991 | 80% | 36% | 2 | 1.4 | 0.7 | 3.0 | | | 0.0054977 | 90% | 25% | 3 | 1.0 | 0.4 | 2.3 | | | 0.5328803 | 50% | 70% | 4 | 3.0 | 1.6 | 5.5 | | | 0.6729637 | 43% | 80% | | | | | | | 1.3590551 | 20% | 90% | | | | | | 48 hours | 0.1734947 | 75% | 35% | 1 | | | | | | 0.1721567 | 81% | 35% | 2 | 9.1 | 0.9 | 89.4 | | | 0.1007266 | 94% | 30% | 3 | 4.2 | 0.3 | 52.6 | | | 0.5328803 | 19% | 70% | 4 | 3.1 | 0.2 | 44.7 | | | 0.6729637 | 13% | 80% | T | | | | | | 1.3590551 | 13% | 90% | 1 | | | | #### Interleukin-12 p40 sCr or UO | | 0 hr prior to A | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|-----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 4.969 | 12.424 | 4.969 | 5.527 | 4.969 | 4.430 | | average | 9.192 | 12.330 | 9.192 | 8.602 | 9.192 | 9.721 | | stdev | 11.716 | 11.953 | 11.716 | 11.722 | 11.716 | 12.198 | | p (t-test) | | 0.221 | | 0.781 | | 0.854 | | min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | max | 66.881 | 41.936 | 66.881 | 51.256 | 66.881 | 37.732 | | n (Samp) | 246 | 23 | 246 | 35 | 246 | 18 | | n (Pat) | 159 | 23 | 159 | 35 | 159 | 18 | sCr only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 5.790 | 7.194 | 5.790 | 1.290 | 5.790 | 11.189 | | average | 9.742 | 7.194 | 9.742 | 8.688 | 9.742 | 13.677 | | stdev | 11.907 | 2.929 | 11.907 | 13.638 | 11.907 | 15.140 | | p (t-test) | | 0.763 | | 0.806 | | 0.390 | | min | 0.000 | 5.122 | 0.000 | 0.000 | 0.000 | 0.000 | | max | 66.881 | 9.265 | 66.881 | 31.752 | 66.881 | 37.732 | | n (Samp) | 318 | 2 | 318 | 8 | 318 | 7 | | n (Pat) | 188 | 2 | 188 | 8 | 188 | 7 | UO only | Ĭ | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 5.412 | 12.424 | 5.412 | 5.678 | 5.412 | 3.090 | | average | 9.657 | 12.173 | 9.657 |
8.087 | 9.657 | 7.275 | | stdev | 11.684 | 12.128 | 11.684 | 10.916 | 11.684 | 10.205 | | p (t-test) | | 0.329 | | 0.488 | | 0.429 | | min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | max | 61.635 | 41.936 | 61.635 | 51.256 | 61.635 | 36.364 | | n (Samp) | 212 | 23 | 212 | 30 | 212 | 16 | | n (Pat) | 132 | 23 | 132 | 30 | 132 | 16 | sCr or UO | Time prior | AUC | SE | nCohort 1 | nCohort 2 | р | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.57 | 0.065 | 246 | 23 | 0.265 | | 24 hours | 0.47 | 0.051 | 246 | 35 | 0.542 | | 48 hours | 0.50 | 0.071 | 246 | 18 | 0.958 | sCr only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | р | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.54 | 0.210 | 318 | 2 | 0.831 | | 24 hours | 0.41 | 0.096 | 318 | 8 | 0.354 | | 48 hours | 0.54 | 0.113 | 318 | 7 | 0.716 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.55 | 0.065 | 212 | 23 | 0.459 | | 24 hours | 0.46 | 0.055 | 212 | 30 | 0.446 | | 48 hours | 0.43 | 0.071 | 212 | 16 | 0.343 | | TT: A TELL A | Cutoff | | | 6 | O.B. | 0507.6 | u con | |----------------------|-----------|------|------|----------|------|--------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 0 | 100% | 0% | 1 | | | | | | 0 | 100% | 0% | 2 | 0.3 | 0.1 | 1.0 | | | 0 | 100% | 0% | 3 | 0.8 | 0.4 | 1.7 | | | 11.45037 | 52% | 70% | 4 | 1.1 | 0.6 | 2.1 | | | 15.294181 | 35% | 80% | | | | | | | 24.020041 | 17% | 90% | | | | | | GORE 2 - CONTINUED | | | | | | | | |----------------------|-----------------|------|--------|----------|-----|-------|---------| | 24 hours | 0 [| 100% | 0% | 1 | | 1 | | | | 0 | 100% | 0% | 2 | 1.7 | 1.0 | 2.9 | | | 0 | 100% | 0% | 3 | 1.3 | 0.8 | 2.4 | | | 11.45037 | 20% | 70% | 4 | 1.2 | 0.7 | 2.1 | | | 15.294181 | 20% | 80% | | | | | | | 24.020041 | 14% | 90% | | | | | | 48 hours | 0.716221 | 72% | 31% | 1 | | | | | | 0 | 100% | 0% | 2 | 0.8 | 0.3 | 2.0 | | | 0 | 100% | 0% | 3 | 0.8 | 0.3 | 2.0 | | | 11.45037 | 28% | 70% | 4 | 1.0 | 0.4 | 2.3 | | | 15.294181 | 22% | 80% | | | | | | | 24.020041 | 11% | 90% | | | | | | Cr only | | | | | | | | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | | 0.1 | 4.01.10005 | 1000 | 477.07 | 1 | | 1 | | | Cr only | | | | | | | | |----------------------|-----------------|------|------|----------|-----|-------|---------| | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 4.8148825 | 100% | 47% | 1 | | | | | | 4.8148825 | 100% | 47% | 2 | na | na | na | | | 4.8148825 | 100% | 47% | 3 | na | na | na | | | 12.423804 | 0% | 70% | 4 | na | na | na | | | 17.550707 | 0% | 80% | | | | | | | 25.306177 | 0% | 90% | | | | | | 24 hours | 0 | 100% | 0% | 1 | | | | | | 0 | 100% | 0% | 2 | 0.5 | 0.0 | 9.9 | | | 0 | 100% | 0% | 3 | 0.5 | 0.0 | 9.8 | | | 12.423804 | 25% | 70% | 4 | 2.1 | 0.5 | 9.5 | | | 17.550707 | 25% | 80% | | | | | | | 25.306177 | 25% | 90% | | | | | | 48 hours | 0 | 100% | 0% | 1 | | | | | | 0 | 100% | 0% | 2 | 0.0 | 0.0 | na | | | 0 | 100% | 0% | 3 | 0.3 | 0.0 | 4.7 | | | 12.423804 | 43% | 70% | 4 | 1.0 | 0.3 | 3.8 | | | 17.550707 | 43% | 80% | | | | | | | 25.306177 | 29% | 90% | | | | | | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 0 | 100% | 0% | 1 | | | | | | 0 | 100% | 0% | 2 | 0.3 | 0.1 | 1.0 | | | 0 | 100% | 0% | 3 | 0.8 | 0.4 | 1.6 | | | 12.058681 | 52% | 70% | 4 | 1.1 | 0.6 | 2.1 | | | 16.350232 | 35% | 80% | | | | | | | 25.14651 | 17% | 90% | | | | | | 24 hours | 1.7242982 | 70% | 34% | 1 | | | | | | 0 | 100% | 0% | 2 | 2.5 | 1.3 | 4.8 | | | 0 | 100% | 0% | 3 | 1.7 | 0.8 | 3.4 | | | 12.058681 | 17% | 70% | 4 | 1.2 | 0.6 | 2.7 | | | 16.350232 | 17% | 80% | | | | | | | 25.14651 | 7% | 90% | | | | | | 48 hours | 0 | 100% | 0% | 1 | | | | | | 0 | 100% | 0% | 2 | 1.0 | 0.3 | 4.0 | | | 0 | 100% | 0% | 3 | 1.7 | 0.6 | 5.3 | | | 12.058681 | 19% | 70% | 4 | 1.7 | 0.6 | 5.3 | | | 16.350232 | 13% | 80% | | | | | | | 25.14651 | 6% | 90% | | · | | · | #### Matrix metalloproteinase-2 sCr or UO | Del el e e | | | | | | | | |------------|-----------------|-----------|----------------|-----------|--------------------------|----------|--| | | 0 hr prior to A | AKI stage | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | | | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 21.200 | 24.400 | 21.200 | 24.100 | 21.200 | 22.600 | | | average | 27.778 | 28.301 | 27.778 | 68.594 | 27.778 | 28.755 | | | stdev | 31.632 | 21.083 | 31.632 | 208.990 | 31.632 | 19.398 | | | p (t-test) | | 0.932 | | 0.000 | | 0.897 | | | min | 0.600 | 0.600 | 0.600 | 0.600 | 0.600 | 2.470 | | | max | 371.000 | 98.500 | 371.000 | 1280.000 | 371.000 | 81.000 | | | n (Samp) | 419 | 27 | 419 | 36 | 419 | 18 | | | n (Pat) | 164 | 27 | 164 | 36 | 164 | 18 | | sCr only | oci omy | | | | | | | | |------------|----------------|----------|----------------|-----------|-------------------------|----------|--| | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 21.600 | 29.100 | 21.600 | 44.600 | 21.600 | 36.900 | | | average | 30.233 | 33.628 | 30.233 | 44.133 | 30.233 | 48.901 | | | stdev | 62.708 | 24.214 | 62.708 | 22.001 | 62.708 | 30.933 | | | p (t-test) | | 0.904 | | 0.507 | | 0.432 | | | min | 0.600 | 6.640 | 0.600 | 11.000 | 0.600 | 8.610 | | | max | 1280.000 | 69.500 | 1280.000 | 71.500 | 1280.000 | 83.700 | | | n (Samp) | 518 | 5 | 518 | 9 | 518 | 7 | | | n (Pat) | 199 | 5 | 199 | 9 | 199 | 7 | | UO only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 21.600 | 23.750 | 21.600 | 22.000 | 21.600 | 25.850 | | | average | 28.392 | 27.162 | 28.392 | 72.997 | 28.392 | 28.324 | | | stdev | 33.380 | 19.414 | 33.380 | 229.169 | 33.380 | 16.072 | | | p (t-test) | | 0.853 | | 0.001 | | 0.994 | | | min | 0.600 | 0.600 | 0.600 | 0.600 | 0.600 | 2.470 | | | max | 371.000 | 98.500 | 371.000 | 1280.000 | 371.000 | 59.000 | | | n (Samp) | 352 | 26 | 352 | 30 | 352 | 16 | | | n (Pat) | 133 | 26 | 133 | 30 | 133 | 16 | | sCr or UO | Time prior | AUC | SE | nCohort 1 | nCohort 2 | р | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.56 | 0.059 | 419 | 27 | 0.299 | | 24 hours | 0.62 | 0.052 | 419 | 36 | 0.016 | | 48 hours | 0.56 | 0.071 | 419 | 18 | 0.391 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.60 | 0.135 | 518 | 5 | 0.439 | | 24 hours | 0.75 | 0.095 | 518 | 9 | 0.008 | | 48 hours | 0.73 | 0.109 | 518 | 7 | 0.034 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.55 | 0.060 | 352 | 26 | 0.363 | | 24 hours | 0.59 | 0.057 | 352 | 30 | 0.119 | | 48 hours | 0.58 | 0.076 | 352 | 16 | 0.325 | | | Cutoff | | | | | l | | |----------------------|--------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 20.9 | 70% | 49% | 1 | | | | | | 18.1 | 81% | 40% | 2 | 1.3 | 0.5 | 3.1 | | | 5.33 | 93% | 6% | 3 | 3.2 | 1.6 | 6.5 | | | 27.9 | 30% | 70% | 4 | 1.5 | 0.6 | 3.6 | | | 35.1 | 15% | 80% | | | | | | | 51.6 | 15% | 90% | | | | | | 24 hours | 21.2 | 72% | 50% | 1 | I | | | |----------|------|-----|-----|---|-----|-----|------| | | 19.1 | 81% | 43% | 2 | 3.1 | 1.3 | 7.8 | | | 13.3 | 92% | 26% | 3 | 3.5 | 1.5 | 8.6 | | | 27.9 | 42% | 70% | 4 | 5.1 | 2.2 | 11.8 | | | 35.1 | 33% | 80% | | | | | | | 51.6 | 25% | 90% | | | | | | 48 hours | 21.4 | 72% | 50% | 1 | | | | | | 11.5 | 83% | 19% | 2 | 0.2 | 0.0 | 2.1 | | | 8.5 | 94% | 11% | 3 | 0.8 | 0.3 | 2.0 | | | 27.9 | 44% | 70% | 4 | 1.6 | 0.8 | 3.2 | | | 35.1 | 33% | 80% | | | | | | | 51.6 | 11% | 90% | | | | | sCr only | | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 19.1 | 80% | 42% | 1 | | | | | | 19.1 | 80% | 42% | 2 | 1.0 | 0.0 | 51.5 | | | 6.63 | 100% | 9% | 3 | 1.0 | 0.0 | 51.5 | | | 28.2 | 60% | 70% | 4 | 2.0 | 0.1 | 39.0 | | | 35.4 | 40% | 80% | | | | | | | 53.7 | 20% | 90% | | | | | | 24 hours | 25.9 | 78% | 65% | 1 | | | | | | 24 | 89% | 61% | 2 | 0.0 | 0.0 | na | | | 10.9 | 100% | 16% | 3 | 3.0 | 0.2 | 42.5 | | | 28.2 | 67% | 70% | 4 | 5.1 | 0.5 | 55.4 | | | 35.4 | 56% | 80% | | | | | | | 53.7 | 44% | 90% | | | | | | 48 hours | 32.1 | 71% | 77% | 1 | | | | | | 22.5 | 86% | 54% | 2 | 0.0 | 0.0 | na | | | 8.5 | 100% | 12% | 3 | 1.0 | 0.0 | 51.9 | | | 28.2 | 71% | 70% | 4 | 5.1 | 0.5 | 55.4 | | | 35.4 | 57% | 80% | | | | | | | 53.7 | 43% | 90% | | | | | | | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 20.4 | 73% | 47% | 1 | | | | | | 18.2 | 81% | 40% | 2 | 2.0 | 0.7 | 5.7 | | | 5.14 | 92% | 5% | 3 | 4.4 | 1.9 | 10.5 | | | 28.3 | 23% | 70% | 4 | 1.7 | 0.6 | 5.0 | | | 36 | 12% | 80% | | | | | | | 50.7 | 12% | 90% | | | | | | 24 hours | 19.9 | 70% | 46% | 1 | | | | | | 19.1 | 80% | 43% | 2 | 5.4 | 1.6 | 18.3 | | | 13.6 |
90% | 27% | 3 | 4.9 | 1.4 | 16.8 | | | 28.3 | 33% | 70% | 4 | 4.8 | 1.4 | 16.6 | | | 36 | 27% | 80% | | | | | | | 50.7 | 23% | 90% | | | | | | 48 hours | 21.1 | 75% | 49% | 1 | | | | | | 12.3 | 81% | 21% | 2 | 0.5 | 0.1 | 2.2 | | | 9.57 | 94% | 13% | 3 | 1.0 | 0.4 | 2.8 | | | 28.3 | 50% | 70% | 4 | 1.5 | 0.6 | 3.6 | | | 36 | 25% | 80% | | | | | | | 50.7 | 13% | 90% | | | | | #### Serum amyloid P-component sCr or UO $\,$ | | 0 hr prior to AKI stage | | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | | |------------|-------------------------|----------|----------------|-----------|--------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 1.733 | 1.521 | 1.733 | 3.891 | 1.733 | 4.107 | | | average | 4.934 | 3.828 | 4.934 | 12.935 | 4.934 | 8.071 | | | stdev | 8.676 | 5.462 | 8.676 | 26.779 | 8.676 | 10.828 | | | p (t-test) | | 0.558 | | 0.000 | | 0.158 | | | min | 0.038 | 0.025 | 0.038 | 0.129 | 0.038 | 0.269 | | | max | 58.307 | 22.353 | 58.307 | 152.000 | 58.307 | 44.971 | | | n (Samp) | 239 | 22 | 239 | 35 | 239 | 17 | | | n (Pat) | 156 | 22 | 156 | 35 | 156 | 17 | | sCr only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 1.838 | 0.025 | 1.838 | 7.887 | 1.838 | 7.601 | | | average | 5.752 | 3.123 | 5.752 | 8.811 | 5.752 | 10.246 | | | stdev | 12.201 | na | 12.201 | 7.923 | 12.201 | 11.896 | | | p (t-test) | | na | | 0.482 | | 0.336 | | | min | 0.025 | 3.123 | 0.025 | 0.431 | 0.025 | 0.269 | | | max | 152.000 | 3.123 | 152.000 | 22.381 | 152.000 | 34.528 | | | n (Samp) | 310 | 1 | 310 | 8 | 310 | 7 | | | n (Pat) | 185 | 1 | 185 | 8 | 185 | 7 | | UO only | , | 0 hr prior toA | .KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|-----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 1.979 | 1.521 | 1.979 | 3.117 | 1.979 | 5.087 | | average | 5.639 | 3.979 | 5.639 | 13.447 | 5.639 | 9.831 | | stdev | 9.025 | 5.358 | 9.025 | 28.777 | 9.025 | 12.096 | | p (t-test) | | 0.388 | | 0.003 | | 0.102 | | min | 0.038 | 0.025 | 0.038 | 0.129 | 0.038 | 1.085 | | max | 58.307 | 22.353 | 58.307 | 152.000 | 58.307 | 44.971 | | n (Samp) | 207 | 23 | 207 | 30 | 207 | 14 | | n (Pat) | 130 | 23 | 130 | 30 | 130 | 14 | sCr or UO | Time prior | AUC | SE | nCohort 1 | nCohort 2 | р | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.50 | 0.064 | 239 | 22 | 0.995 | | 24 hours | 0.64 | 0.053 | 239 | 35 | 0.011 | | 48 hours | 0.67 | 0.074 | 239 | 17 | 0.022 | sCr only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.63 | 0.301 | 310 | 1 | 0.676 | | 24 hours | 0.66 | 0.107 | 310 | 8 | 0.125 | | 48 hours | 0.65 | 0.114 | 310 | 7 | 0.174 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.49 | 0.063 | 207 | 23 | 0.831 | | 24 hours | 0.61 | 0.058 | 207 | 30 | 0.069 | | 48 hours | 0.69 | 0.081 | 207 | 14 | 0.021 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | T of OR | |----------------------|-----------------|------|------|----------|-----|-------|---------| | 0 hours | 1.0844797 | 73% | 40% | 1 | | | | | | 0.6598911 | 82% | 27% | 2 | 4.2 | 1.7 | 10.3 | | | 0.617452 | 91% | 26% | 3 | 1.0 | 0.3 | 3.9 | | | 3.9445692 | 27% | 70% | 4 | 1.7 | 0.6 | 5.1 | | | 6.4927358 | 23% | 80% | | | | | | | 12.688918 | 9% | 91% | | | | | | 24 hours | 1.7074782 | 71% | 49% | 1 | | | | |----------|-----------|-----|-----|---|-----|-----|------| | | 0.8588182 | 80% | 34% | 2 | 1.2 | 0.6 | 2.3 | | | 0.4680993 | 91% | 18% | 3 | 1.0 | 0.5 | 2.0 | | | 3.9445692 | 49% | 70% | 4 | 3.1 | 1.9 | 5.2 | | | 6.4927358 | 46% | 80% | | | | | | | 12.688918 | 23% | 91% | | | | | | 48 hours | 3.0914813 | 71% | 64% | 1 | | | | | | 1.0852451 | 82% | 40% | 2 | 4.2 | 0.3 | 51.9 | | | 1.028192 | 94% | 38% | 3 | 4.2 | 0.3 | 51.9 | | | 3.9445692 | 53% | 70% | 4 | 9.0 | 0.9 | 87.2 | | | 6.4927358 | 41% | 80% | | | | | | | 12.688918 | 24% | 91% | | | | | sCr only | oci omy | | | | | | | | |----------------------|-----------------|------|------|----------|------------------|-------|---------| | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 3.1116249 | 100% | 63% | 1 | | | | | | 3.1116249 | 100% | 63% | 2 | na | na | na | | | 3.1116249 | 100% | 63% | 3 | na | na | na | | | 4.2002819 | 0% | 70% | 4 | na | na | na | | | 7.0241397 | 0% | 80% | | | | | | | 13.552771 | 0% | 90% | | | | | | 24 hours | 1.6307525 | 75% | 46% | 1 | | | | | | 0.9853183 | 88% | 33% | 2 | 2.0 | 0.1 | 39.8 | | | 0.3919172 | 100% | 13% | 3 | 0.0 | 0.0 | na | | | 4.2002819 | 63% | 70% | 4 | 5.2 | 0.5 | 57.5 | | | 7.0241397 | 50% | 80% | | | | | | | 13.552771 | 25% | 90% | | | | | | 48 hours | 2.7653229 | 71% | 60% | 1 | | | | | | 1.028192 | 86% | 34% | 2 | 1.0 | 0.0 | 53.0 | | | 0.2564023 | 100% | 8% | 3 | 1.0 | 0.0 | 53.0 | | | 4.2002819 | 57% | 70% | 4 | 4.1 | 0.3 | 50.1 | | | 7.0241397 | 57% | 80% | | , and the second | | · | | | 13.552771 | 14% | 90% | | | | | | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 1.0844797 | 74% | 37% | 1 | | | | | | 0.6598911 | 83% | 25% | 2 | 0.6 | 0.2 | 1.8 | | | 0.5885975 | 91% | 24% | 3 | 2.5 | 1.3 | 4.7 | | | 5.0110557 | 26% | 70% | 4 | 0.8 | 0.3 | 2.1 | | | 8.3049933 | 13% | 80% | | | | | | | 16.375793 | 4% | 90% | | | | | | 24 hours | 1.7574663 | 70% | 48% | 1 | | | | | | 0.8588182 | 80% | 31% | 2 | 1.5 | 0.7 | 3.1 | | | 0.513498 | 90% | 20% | 3 | 1.5 | 0.7 | 3.1 | | | 5.0110557 | 40% | 70% | 4 | 2.4 | 1.3 | 4.6 | | | 8.3049933 | 37% | 80% | | | | | | | 16.375793 | 20% | 90% | | | | | | 48 hours | 3.3281087 | 71% | 62% | 1 | | | | | | 1.1230311 | 86% | 37% | 2 | na | na | na | | | 1.0852451 | 93% | 37% | 3 | na | na | na | | | 5.0110557 | 50% | 70% | 4 | na | na | na | | | 8.3049933 | 29% | 80% | | | | | | | 16.375793 | 21% | 90% | | | | | ### Matrix metalloproteinase-9 sCr or UO | | 0 hr prior to A | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|-----------------|------------|----------------|------------|----------------|------------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 2919.594 | 10759.715 | 2919.594 | 12341.776 | 2919.594 | 11363.291 | | average | 12657.744 | 34384.107 | 12657.744 | 28004.195 | 12657.744 | 28146.981 | | stdev | 24357.723 | 49699.726 | 24357.723 | 29887.313 | 24357.723 | 38420.607 | | p (t-test) | | 0.000 | | 0.001 | | 0.014 | | min | 3.588 | 192.720 | 3.588 | 132.776 | 3.588 | 200.747 | | max | 159217.283 | 176209.055 | 159217.283 | 109530.934 | 159217.283 | 135985.892 | | n (Samp) | 244 | 23 | 244 | 35 | 244 | 18 | | n (Pat) | 158 | 23 | 158 | 35 | 158 | 18 | sCr only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|----------------|----------|----------------|-----------|-------------------------|------------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 4240.182 | 2031.186 | 4240.182 | 5260.972 | 4240.182 | 12438.574 | | | average | 16510.837 | 2031.186 | 16510.837 | 11325.761 | 16510.837 | 37696.949 | | | stdev | 29366.734 | 2537.874 | 29366.734 | 19036.200 | 29366.734 | 43094.574 | | | p (t-test) | | 0.487 | | 0.620 | | 0.063 | | | min | 3.588 | 236.639 | 3.588 | 132.776 | 3.588 | 499.433 | | | max | 176209.055 | 3825.734 | 176209.055 | 56621.227 | 176209.055 | 112264.995 | | | n (Samp) | 316 | 2 | 316 | 8 | 316 | 7 | | | n (Pat) | 187 | 2 | 187 | 8 | 187 | 7 | | UO only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|------------|----------------|------------|----------------|------------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 3619.946 | 10759.715 | 3619.946 | 20253.666 | 3619.946 | 8974.200 | | average | 13298.584 | 34266.775 | 13298.584 | 30160.313 | 13298.584 | 26828.382 | | stdev | 24677.703 | 49778.384 | 24677.703 | 30591.303 | 24677.703 | 39232.221 | | p (t-test) | | 0.001 | | 0.001 | | 0.045 | | min | 3.588 | 115.408 | 3.588 | 133.538 | 3.588 | 200.747 | | max | 159217.283 | 176209.055 | 159217.283 | 109530.934 | 159217.283 | 135985.892 | | n (Samp) | 211 | 23 | 211 | 30 | 211 | 16 | | n (Pat) | 131 | 23 | 131 | 30 | 131 | 16 | | sCr or UO | | | | | | | | | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.70 | 0.063 | 244 | 23 | 0.002 | | 24 hours | 0.67 | 0.053 | 244 | 35 | 0.001 | | 48 hours | 0.65 | 0.072 | 244 | 18 | 0.035 | sCr only | Time prior | ΛUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.29 | 0.154 | 316 | 2 | 0.174 | | 24 hours | 0.44 | 0.099 | 316 | 8 | 0.539 | | 48 hours | 0.65 | 0.114 | 316 | 7 | 0.175 | UO only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.67 | 0.064 | 211 | 23 | 0.007 | | 24 hours | 0.69 | 0.056 | 211 | 30 | 0.001 | | 48 hours | 0.63 | 0.077 | 211 | 16 | 0.100 | | | Cutoff | | | | | | |
----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 6333.2486 | 74% | 65% | 1 | | | | | | 3813.5508 | 83% | 56% | 2 | 0.3 | 0.0 | 4.6 | | | 252.42408 | 91% | 10% | 3 | 3.3 | 1.3 | 8.3 | | | 8081.4656 | 61% | 70% | 4 | 3.7 | 1.5 | 9.2 | | | 13914.318 | 43% | 80% | | | | | | | 44000 | 26% | 92% | | | | | | 24 hours | 4191.8645 | 71% | 56% | 1 | | | | |----------|-----------|-----|-----|---|-----|-----|-----| | | 1859.8427 | 80% | 39% | 2 | 1.0 | 0.4 | 2.3 | | | 400.98346 | 91% | 16% | 3 | 1.7 | 0.8 | 3.3 | | | 8081.4656 | 63% | 70% | 4 | 4.1 | 2.3 | 7.3 | | | 13914.318 | 49% | 80% | | | | | | | 44000 | 23% | 92% | | | | | | 48 hours | 5664.4607 | 72% | 62% | 1 | | | | | | 582.72741 | 83% | 20% | 2 | 0.2 | 0.0 | 2.9 | | | 307.74357 | 94% | 11% | 3 | 1.0 | 0.4 | 2.8 | | | 8081.4656 | 56% | 70% | 4 | 2.4 | 1.1 | 5.2 | | | 13914.318 | 39% | 80% | | | | | | | 44000 | 22% | 92% | | | | | sCr only | · | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 228.43976 | 100% | 9% | 1 | | | | | | 228.43976 | 100% | 9% | 2 | na | na | na | | | 228.43976 | 100% | 9% | 3 | na | na | na | | | 11273.561 | 0% | 70% | 4 | na | na | na | | | 21431.119 | 0% | 80% | | | | | | | 57264.518 | 0% | 90% | | | | | | 24 hours | 400.98346 | 75% | 15% | 1 | | | | | | 201.31688 | 88% | 8% | 2 | 3.1 | 0.2 | 44.1 | | | 129.86648 | 100% | 6% | 3 | 0.0 | 0.0 | na | | | 11273.561 | 25% | 70% | 4 | 4.2 | 0.3 | 50.6 | | | 21431.119 | 13% | 80% | | | | | | | 57264.518 | 0% | 90% | | | | | | 48 hours | 9943.6746 | 71% | 68% | 1 | | | | | | 582.72741 | 86% | 19% | 2 | 0.0 | 0.0 | na | | | 493.76972 | 100% | 17% | 3 | 1.0 | 0.1 | 7.4 | | | 11273.561 | 57% | 70% | 4 | 1.5 | 0.3 | 8.1 | | | 21431.119 | 43% | 80% | | | | | | | 57264.518 | 43% | 90% | | | | | | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 6380.8915 | 74% | 62% | 1 | | | | | | 2194.6163 | 83% | 42% | 2 | 0.6 | 0.1 | 3.5 | | | 252.42408 | 91% | 9% | 3 | 2.9 | 1.1 | 7.8 | | | 9558.2526 | 57% | 70% | 4 | 3.7 | 1.5 | 9.4 | | | 15700.544 | 39% | 80% | | | | | | | 44000 | 26% | 92% | | | | | | 24 hours | 4633.5168 | 70% | 55% | 1 | | | | | | 2068.3695 | 80% | 40% | 2 | 1.3 | 0.5 | 3.3 | | | 1142.4862 | 90% | 26% | 3 | 1.3 | 0.5 | 3.3 | | | 9558.2526 | 60% | 70% | 4 | 5.0 | 2.5 | 9.9 | | | 15700.544 | 53% | 80% | | | | | | | 44000 | 23% | 92% | | | | | | 48 hours | 3813.5508 | 75% | 51% | 1 | | | | | | 2459.3861 | 81% | 43% | 2 | 0.6 | 0.1 | 3.5 | | | 200.74676 | 94% | 8% | 3 | 1.3 | 0.4 | 4.5 | | | 9558.2526 | 50% | 70% | 4 | 2.5 | 0.9 | 6.8 | | | 15700.544 | 31% | 80% | | | | | | | 44000 | 19% | 92% | | • | | | ### FIGURE 3 ### Clusterin sCr or UO | | 0 hr prior to | AKI stage | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | | |------------|---------------|-----------|----------------|-----------|--------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 108.761 | 96.960 | 108.761 | 96.960 | 108.761 | 96.960 | | | average | 168.738 | 146.608 | 168.738 | 146.608 | 168.738 | 146.608 | | | stdev | 165.033 | 185.858 | 165.033 | 185.858 | 165.033 | 185.858 | | | p (t-test) | | 0.611 | | 0.611 | | 0.611 | | | min | 7.973 | 5.052 | 7.973 | 5.052 | 7.973 | 5.052 | | | max | 684.578 | 715.260 | 684.578 | 715.260 | 684.578 | 715.260 | | | n (Samp) | 54 | 22 | 54 | 22 | 54 | 22 | | | n (Pat) | 54 | 22 | 54 | 22 | 54 | 22 | | sCr only | | 0 hr prior to | AKI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|---------------|-----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 80.501 | 58.315 | 80.501 | 58.315 | 80.501 | 58.315 | | average | 122.269 | 60.418 | 122.269 | 60.418 | 122.269 | 60.418 | | stdev | 143.085 | 37.189 | 143.085 | 37.189 | 143.085 | 37.189 | | p (t-test) | | 0.407 | | 0.407 | | 0.407 | | min | 5.052 | 23.097 | 5.052 | 23.097 | 5.052 | 23.097 | | max | 526.949 | 101.944 | 526.949 | 101.944 | 526.949 | 101.944 | | n (Samp) | 20 | 4 | 20 | 4 | 20 | 4 | | n (Pat) | 20 | 4 | 20 | 4 | 20 | 4 | UO only | | 0 hr prior to | 0 hr prior toAKI stage | | 24 hr prior toAKI stage | | AKI stage | |------------|---------------|------------------------|-----------|-------------------------|-----------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 111.123 | 95.181 | 111.123 | 95.181 | 111.123 | 95.181 | | average | 403.189 | 168.328 | 403.189 | 168.328 | 403.189 | 168.328 | | stdev | 1515.416 | 206.344 | 1515.416 | 206.344 | 1515.416 | 206.344 | | p (t-test) | | 0.529 | | 0.529 | | 0.529 | | min | 9.088 | 37.552 | 9.088 | 37.552 | 9.088 | 37.552 | | max | 10168.806 | 715.260 | 10168.806 | 715.260 | 10168.806 | 715.260 | | n (Samp) | 44 | 17 | 44 | 17 | 44 | 17 | | n (Pat) | 44 | 17 | 44 | 17 | 44 | 17 | sCr or UO | Time
prior AKI
stage | AUC | SE | nCohort
1 | nCohort 2 | p | |----------------------------|------|-------|--------------|-----------|-------| | 0 hours | 0.47 | 0.073 | 54 | 22 | 0.685 | | 24 hours | 0.47 | 0.073 | 54 | 22 | 0.685 | | 48 hours | 0.47 | 0.073 | 54 | 22 | 0.685 | sCr only | Time
prior AKI
stage | AUC | SE | nCohort
1 | nCohort 2 | p | |----------------------------|------|-------|--------------|-----------|-------| | 0 hours | 0.40 | 0.151 | 20 | 4 | 0.506 | | 24 hours | 0.40 | 0.151 | 20 | 4 | 0.506 | | 48 hours | 0.40 | 0.151 | 20 | 4 | 0.506 | UO only | Time
prior AKI
stage | AUC | SE | nCohort
1 | nCohort 2 | p | |----------------------------|------|-------|--------------|-----------|-------| | 0 hours | 0.48 | 0.083 | 44 | 17 | 0.795 | | 24 hours | 0.48 | 0.083 | 44 | 17 | 0.795 | | 48 hours | 0.48 | 0.083 | 44 | 17 | 0.795 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% | CI of OR | |----------------------|-----------------|------|------|----------|-----|-----|----------| | 0 hours | 69.662131 | 73% | 37% | 1 | | | | | | 60.30808 | 82% | 35% | 2 | 6.2 | 1.4 | 28.2 | | | 35.699167 | 91% | 26% | 3 | 7.7 | 1.7 | 34.6 | | | | 1 | | | _ | | | |----------|-----------|-----|-----|---|-----|-----|------| | | 250.3383 | 9% | 70% | 4 | 1.6 | 0.2 | 10.4 | | | 316.00649 | 9% | 81% | | | | | | | 400 | 9% | 91% | | | | | | 24 hours | 69.662131 | 73% | 37% | 1 | | | | | | 60.30808 | 82% | 35% | 2 | 6.2 | 1.4 | 28.2 | | | 35.699167 | 91% | 26% | 3 | 7.7 | 1.7 | 34.6 | | | 250.3383 | 9% | 70% | 4 | 1.6 | 0.2 | 10.4 | | | 316.00649 | 9% | 81% | | | | | | | 400 | 9% | 91% | | | | | | 48 hours | 69.662131 | 73% | 37% | 1 | | | | | | 60.30808 | 82% | 35% | 2 | 6.2 | 1.4 | 28.2 | | | 35.699167 | 91% | 26% | 3 | 7.7 | 1.7 | 34.6 | | | 250.3383 | 9% | 70% | 4 | 1.6 | 0.2 | 10.4 | | | 316.00649 | 9% | 81% | | | | | | | 400 | 9% | 91% | | | | | | • | Cutoff | | | Quartil | | | | |----------------------|-----------|------|------|---------|------|-------|----------| | Time prior AKI stage | value | sens | spec | e | OR | 95% (| CI of OR | | 0 hours | 69.662131 | 71% | 34% | 1 | | | | | | 62.600557 | 82% | 32% | 2 | 3.5 | 0.6 | 19.3 | | | 55.600211 | 94% | 32% | 3 | 10.5 | 2.0 | 55.5 | | | 268.89919 | 12% | 70% | 4 | 0.5 | 0.0 | 12.5 | | | 359.30566 | 12% | 82% | | | | | | | 400 | 12% | 91% | | | | | | 24 hours | 69.662131 | 71% | 34% | 1 | | | | | | 62.600557 | 82% | 32% | 2 | 3.5 | 0.6 | 19.3 | | | 55.600211 | 94% | 32% | 3 | 10.5 | 2.0 | 55.5 | | | 268.89919 | 12% | 70% | 4 | 0.5 | 0.0 | 12.5 | | | 359.30566 | 12% | 82% | | | | | | | 400 | 12% | 91% | | | | | | 48 hours | 69.662131 | 71% | 34% | 1 | | | | | | 62.600557 | 82% | 32% | 2 | 3.5 | 0.6 | 19.3 | | | 55.600211 | 94% | 32% | 3 | 10.5 | 2.0 | 55.5 | | | 268.89919 | 12% | 70% | 4 | 0.5 | 0.0 | 12.5 | | | 359.30566 | 12% | 82% | | | | | | | 400 | 12% | 91% | | | | | ### Serum amyloid P-component sCr UO | | 0 hr prior to AKI stage | | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | |------------|-------------------------|----------|----------------|-----------|--------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 1.979 | 3.891 | 1.979 | 3.891 | 1.979 | 3.891 | | average | 6.056 | 10.083 | 6.056 | 10.083 | 6.056 | 10.083 | | stdev | 9.464 | 14.097 | 9.464 | 14.097 | 9.464 | 14.097 | | p (t-test) | | 0.148 | | 0.148 | | 0.148 | | min | 0.038 | 0.731 | 0.038 | 0.731 | 0.038 | 0.731 | | max | 37.076 | 51.558 | 37.076 | 51.558 | 37.076 | 51.558 | | n (Samp) | 53 | 23 | 53 | 23 | 53 | 23 | | n (Pat) | 53 | 23 | 53 | 23 | 53 | 23 | sCr only | 3CI OHIY | | | | | | | |------------|------------------------|--------|----------------|-----------|-------------------------|----------| | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | | Cohort 1 Cohort 2 | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 1.868 | 10.596 | 1.868 | 10.596 | 1.868 | 10.596 | | average | 7.989 | 12.013 | 7.989 | 12.013 | 7.989 | 12.013 | | stdev | 14.702 | 7.639 | 14.702 | 7.639 | 14.702 | 7.639 | | p (t-test) | | 0.604 | | 0.604 | | 0.604 | | min | 0.038 | 4.481 | 0.038 | 4.481 | 0.038 | 4.481 | | max | 51.558 | 22.381 | 51.558 | 22.381 | 51.558 | 22.381 | | n (Samp) | 20 | 4 | 20 | 4 | 20 | 4 | | n (Pat) | 20 | 4 | 20 | 4 | 20 | 4 | UO only | COomy | | | | | | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------| | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 |
Cohort 2 | | median | 2.578 | 2.983 | 2.578 | 2.983 | 2.578 | 2.983 | | average | 7.074 | 5.546 | 7.074 | 5.546 | 7.074 | 5.546 | | stdev | 10.048 | 7.077 | 10.048 | 7.077 | 10.048 | 7.077 | | p (t-test) | | 0.560 | | 0.560 | | 0.560 | | min | 0.038 | 0.731 | 0.038 | 0.731 | 0.038 | 0.731 | | max | 37.076 | 29.750 | 37.076 | 29.750 | 37.076 | 29.750 | | n (Samp) | 43 | 18 | 43 | 18 | 43 | 18 | | n (Pat) | 43 | 18 | 43 | 18 | 43 | 18 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.67 | 0.070 | 53 | 23 | 0.016 | | 24 hours | 0.67 | 0.070 | 53 | 23 | 0.016 | | 48 hours | 0.67 | 0.070 | 53 | 23 | 0.016 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.83 | 0.135 | 20 | 4 | 0.016 | | 24 hours | 0.83 | 0.135 | 20 | 4 | 0.016 | | 48 hours | 0.83 | 0.135 | 20 | 4 | 0.016 | | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.57 | 0.082 | 43 | 18 | 0.379 | | 24 hours | 0.57 | 0.082 | 43 | 18 | 0.379 | | 48 hours | 0.57 | 0.082 | 43 | 18 | 0.379 | ## Matrix metalloproteinase-9 | sCr | or | П | n | |-----|----|---|---| | SCI | OF | U | v | U.S. Patent | | 0 hr prior to A | KI stage | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | | |------------|-----------------|------------|----------------|------------|--------------------------|------------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 3505.601 | 22269.362 | 3505.601 | 22269.362 | 3505.601 | 22269.362 | | | average | 12914.017 | 37532.158 | 12914.017 | 37532.158 | 12914.017 | 37532.158 | | | stdev | 22424.789 | 38644.771 | 22424.789 | 38644.771 | 22424.789 | 38644.771 | | | p (t-test) | | 0.001 | | 0.001 | | 0.001 | | | min | 55.139 | 104.612 | 55.139 | 104.612 | 55.139 | 104.612 | | | max | 102501.267 | 109530.934 | 102501.267 | 109530.934 | 102501.267 | 109530.934 | | | n (Samp) | 53 | 23 | 53 | 23 | 53 | 23 | | | n (Pat) | 53 | 2.3 | 53 | 23 | 53 | 23 | | sCr only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|-----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 4274.887 | 4935.166 | 4274.887 | 4935.166 | 4274.887 | 4935.166 | | average | 9968.290 | 17537.123 | 9968.290 | 17537.123 | 9968.290 | 17537.123 | | stdev | 16421.761 | 28773.904 | 16421.761 | 28773.904 | 16421.761 | 28773.904 | | p (t-test) | | 0.470 | | 0.470 | | 0.470 | | min | 111.032 | 104.612 | 111.032 | 104.612 | 111.032 | 104.612 | | max | 63552.815 | 60173.549 | 63552.815 | 60173.549 | 63552.815 | 60173.549 | | n (Samp) | 19 | 4 | 19 | 4 | 19 | 4 | | n (Pat) | 19 | 4 | 19 | 4 | 19 | 4 | UO only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|----------------|------------|----------------|------------|-------------------------|------------|--| | | Cohort 1 | Cohort 2 | Cohort I | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 6145.916 | 33134.681 | 6145.916 | 33134.681 | 6145.916 | 33134.681 | | | average | 17708.819 | 38710.302 | 17708.819 | 38710.302 | 17708.819 | 38710.302 | | | stdev | 27866.487 | 37725.444 | 27866.487 | 37725.444 | 27866.487 | 37725.444 | | | p (t-test) | | 0.018 | | 0.018 | | 0.018 | | | min | 55.139 | 127.318 | 55.139 | 127.318 | 55.139 | 127.318 | | | max | 109490.680 | 109530.934 | 109490.680 | 109530.934 | 109490.680 | 109530.934 | | | n (Samp) | 44 | 18 | 44 | 18 | 44 | 18 | | | n (Pat) | 44 | 18 | 44 | 18 | 44 | 18 | | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.66 | 0.071 | 53 | 23 | 0.029 | | 24 hours | 0.66 | 0.071 | 53 | 23 | 0.029 | | 48 hours | 0.66 | 0.071 | 53 | 23 | 0.029 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.43 | 0.156 | 19 | 4 | 0.673 | | 24 hours | 0.43 | 0.156 | 19 | 4 | 0.673 | | 48 hours | 0.43 | 0.156 | 19 | 4 | 0.673 | UO only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.65 | 0.080 | 44 | 18 | 0.061 | | 24 hours | 0.65 | 0.080 | 44 | 18 | 0.061 | | 48 hours | 0.65 | 0.080 | 44 | 18 | 0.061 | | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 4274.8868 | 74% | 53% | 1 | | | | | | 414.7431 | 83% | 17% | 2 | 0.4 | 0.1 | 1.4 | | | 122.63715 | 91% | 4% | 3 | 0.4 | 0.1 | 1.4 | | | 12108.63 | 61% | 72% | 4 | 3.0 | 1.2 | 7.3 | | | 13914.318 | 57% | 81% | | | | | | | 37633.202 | 48% | 91% | | | | | | 24 hours | 4274.8868 | 74% | 53% | 1 | | I I | I | |----------|-----------|-----|-----|---|-----------------|-----|-----| | | 414.7431 | 83% | 17% | 2 | 0.4 | 0.1 | 1.4 | | | 122.63715 | 91% | 4% | 3 | 0.4 | 0.1 | 1.4 | | | 12108.63 | 61% | 72% | 4 | 3.0 | 1.2 | 7.3 | | | 13914.318 | 57% | 81% | | | | | | | 37633.202 | 48% | 91% | | | | | | 48 hours | 4274.8868 | 74% | 53% | 1 | | | | | | 414.7431 | 83% | 17% | 2 | 0.4 | 0.1 | 1.4 | | | 122.63715 | 91% | 4% | 3 | 0.4 | 0.1 | 1.4 | | | 12108.63 | 61% | 72% | 4 | 3.0 | 1.2 | 7.3 | | | 13914.318 | 57% | 81% | | , in the second | | | | | 37633.202 | 48% | 91% | | | | | sCr only | ser only | | | | | | | | |----------------------|-----------------|------|------|----------|-----|-------|---------| | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 201.31688 | 75% | 11% | 1 | | | | | | 0 | 100% | 0% | 2 | 1.0 | 0.0 | 110.4 | | | 0 | 100% | 0% | 3 | 0.0 | 0.0 | na | | | 11273.561 | 25% | 74% | 4 | 3.3 | 0.1 | 179.3 | | | 12659.713 | 25% | 84% | | | | | | | 44000 | 25% | 95% | | | | | | 24 hours | 201.31688 | 75% | 11% | 1 | | | | | | 0 | 100% | 0% | 2 | 1.0 | 0.0 | 110.4 | | | 0 | 100% | 0% | 3 | 0.0 | 0.0 | na | | | 11273.561 | 25% | 74% | 4 | 3.3 | 0.1 | 179.3 | | | 12659.713 | 25% | 84% | | | | | | | 44000 | 25% | 95% | | | | | | 48 hours | 201.31688 | 75% | 11% | 1 | | | | | | 0 | 100% | 0% | 2 | 1.0 | 0.0 | 110.4 | | | 0 | 100% | 0% | 3 | 0.0 | 0.0 | na | | | 11273.561 | 25% | 74% | 4 | 3.3 | 0.1 | 179.3 | | | 12659.713 | 25% | 84% | | | | | | 1 | 44000 | 25% | 95% | | | | | | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 4882.635 | 72% | 45% | 1 | | | | | | 817.28764 | 83% | 20% | 2 | 0.6 | 0.1 | 2.8 | | | 190.36647 | 94% | 9% | 3 | 0.4 | 0.1 | 2.6 | | | 13914.318 | 61% | 70% | 4 | 3.5 | 1.1 | 11.3 | | | 31712.706 | 50% | 82% | | | | | | | 44000 | 33% | 91% | | | | | | 24 hours | 4882.635 | 72% | 45% | 1 | | | | | | 817.28764 | 83% | 20% | 2 | 0.6 | 0.1 | 2.8 | | | 190.36647 | 94% | 9% | 3 | 0.4 | 0.1 | 2.6 | | | 13914.318 | 61% | 70% | 4 | 3.5 | 1.1 | 11.3 | | | 31712.706 | 50% | 82% | | | | | | | 44000 | 33% | 91% | | | | | | 48 hours | 4882.635 | 72% | 45% | 1 | | | | | | 817.28764 | 83% | 20% | 2 | 0.6 | 0.1 | 2.8 | | | 190.36647 | 94% | 9% | 3 | 0.4 | 0.1 | 2.6 | | | 13914.318 | 61% | 70% | 4 | 3.5 | 1.1 | 11.3 | | | 31712.706 | 50% | 82% | | | | | | | 44000 | 33% | 91% | | | | | FIGURE 4 Fatty acid binding protein, heart | sCr. | or | T | Ю | |------|----|---|---| | | 0 hr prior to AKI stage | | 24 hr prior to | 24 hr prior to AKI stage | | 48 hr prior to AKI stage | | |------------|-------------------------|-----------|----------------|--------------------------|----------|--------------------------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 1 Cohort 2 | | Cohort 2 | | | median | 117.500 | 922.000 | 117.500 | 1031.000 | 117.500 | 1787.500 | | | average | 455.927 | 3033.788 | 455.927 | 3105.880 | 455.927 | 2692.297 | | | stdev | 1028.417 | 4083.693 | 1028.417 | 4170.880 | 1028.417 | 2926.900 | | | p (t-test) | | 0.000 | | 0.000 | | 0.000 | | | min | 1.880 | 11.000 | 1.880 | 5.180 | 1.880 | 4.070 | | | max | 8087.000 | 14771.000 | 8087.000 | 14771.000 | 8087.000 | 8087.000 | | | n (Samp) | 104 | 17 | 104 | 16 | 104 | 10 | | | n (Pat) | 104 | 17 | 104 | 16 | 104 | 10 | | sCr only | | 0 hr prior toAKI stage | | 24 hr prior toAKI stage | | 48 hr prior toAKI stage | | |------------|------------------------|-----------|-------------------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 149.500 | 1050.500 | 149.500 | 1050.500 | 149.500 | 577.000 | | average | 702.389 | 4277.500 | 702.389 | 4274.898 | 702.389 | 2880.614 | | stdev | 1678.295 | 5418.522 | 1678.295 | 5420.638 | 1678.295 | 3577.676 | | p (t-test) | | 0.000 | | 0.000 | | 0.007 | | min | 1.880 | 11.000 | 1.880 | 5.180 | 1.880 | 4.070 | | max | 13231.000 | 14771.000 | 13231.000 | 14771.000 | 13231.000 | 8087.000 | | n (Samp) | 170 | 8 | 170 | 8 | 170 | 5 | | n (Pat) | 170 | 8 | 170 | 8 | 170 | 5 | UO only | - | 0 hr prior toAKI stage | | 24 hr prior toAKI stage | | 48 hr prior toAKI stage | | |------------|------------------------|----------|-------------------------|----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 118.000 | 922.000 | 118.000 | 1031.000 | 118.000 | 3000.000 | | average | 554.147 | 2396.582 | 554.147 | 2450.290 | 554.147 | 3026.271 | | stdev | 1367.982 | 2728.736 | 1367.982 | 2781.185 | 1367.982 | 3123.056 | | p (t-test) | | 0.000 | | 0.000 | | 0.000 | | min
| 3.520 | 38.600 | 3.520 | 16.300 | 3.520 | 16.300 | | max | 8087.000 | 8087.000 | 8087.000 | 8087.000 | 8087.000 | 8087.000 | | n (Samp) | 85 | 11 | 85 | 10 | 85 | 7 | | n (Pat) | 8.5 | 11 | 8.5 | 10 | 85 | 7 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.80 | 0.067 | 104 | 17 | 0.000 | | 24 hours | 0.77 | 0.072 | 104 | 16 | 0.000 | | 48 hours | 0.71 | 0.095 | 104 | 10 | 0.026 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.79 | 0.097 | 170 | 8 | 0.003 | | 24 hours | 0.77 | 0.099 | 170 | 8 | 0.005 | | 48 hours | 0.70 | 0.133 | 170 | 5 | 0.124 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.81 | 0.082 | 85 | 11 | 0.000 | | 24 hours | 0.78 | 0.089 | 85 | 10 | 0.001 | | 48 hours | 0.75 | 0.109 | 85 | 7 | 0.021 | | | | Cutoff | | | | | 95% (| CI of | |---|----------------------|--------|------|------|----------|------|-------|-------| | L | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | Γ | 0 hours | 582 | 71% | 83% | 1 | | | | | ١ | | 408 | 82% | 78% | 2 | 2.1 | 0.1 | 45.0 | | ١ | | 38.2 | 94% | 37% | 3 | 2.1 | 0.1 | 45.0 | | | | 255 | 82% | 70% | 4 | 18.3 | 1.8 | 181.6 | | - | | 517 | 76% | 81% | | | | | U.S. Patent | GURE 4 - CONTINUED | | | | | | | | |----------------------|--------|------|------|--|-----|--|----------| | | 1260 | 35% | 90% | | | <u> </u> | <u> </u> | | 24 hours | 566 | 75% | 82% | 1 | | | | | | 338 | 81% | 77% | 2 | 0.5 | 0.0 | 10.5 | | | 14.5 | 94% | 21% | 3 | 1.0 | 0.1 | 8.2 | | | 255 | 81% | 70% | 4 | 8.1 | 2.1 | 30.7 | | | 517 | 75% | 81% | | | | | | | 1260 | 38% | 90% | | | | | | 48 hours | 338 | 70% | 77% | 1 | | | | | | 38.2 | 80% | 37% | 2 | 0.5 | 0.0 | 10.2 | | | 14.5 | 90% | 21% | 3 | 0.5 | 0.0 | 10.6 | | | 255 | 70% | 70% | 4 | 3.4 | 0.8 | 14.3 | | | 517 | 60% | 81% | | | | | | | 1260 | 50% | 90% | 1 | | | | | only | | | • | | | | | | | Cutoff | | | | | 95% | CI of | | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 582 | 75% | 78% | 1 | | | | | | 566 | 88% | 77% | 2 | 0.0 | 0.0 | na | | | 10.9 | 100% | 10% | 3 | 1.0 | 0.0 | 55. | | | 306 | 88% | 70% | 4 | 6.6 | 0.6 | 71. | | | 718 | 63% | 80% | | | | | | | 1790 | 38% | 90% | | | | | | 24 hours | 573 | 75% | 77% | 1 | | | | | | 566 | 88% | 77% | 2 | 0.0 | 0.0 | na | | | 3.52 | 100% | 2% | 3 | 1.0 | 0.0 | 55. | | | 306 | 88% | 70% | 4 | 6.6 | 0.6 | 71. | | | 718 | 63% | 80% | | | | | | | 1790 | 38% | 90% | | | | | | 48 hours | 566 | 80% | 77% | 1 | | | | | | 566 | 80% | 77% | 2 | 0.0 | 0.0 | na | | | 3.52 | 100% | 2% | 3 | 0.0 | 0.0 | na | | | 306 | 80% | 70% | 4 | 4.2 | 0.3 | 53. | | | 718 | 40% | 80% | | 1.2 | 10.5 | | | | 1790 | 40% | 90% | 1 | | 1 | | | only | 1,,,0 | 1070 | 7070 | | | | | | , | Cutoff | | | | | 95% | CI of | | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 582 | 73% | 85% | 1 | | | | | | 408 | 82% | 80% | 2 | na | na | na | | | 43.8 | 91% | 39% | 3 | na | na | na | | | 271 | 82% | 71% | 4 | na | na | na | | | 408 | 82% | 80% | | | | | | | 1360 | 36% | 91% | 1 | | \vdash | | | 24 hours | 566 | 70% | 84% | 1 | | | | | | 338 | 80% | 79% | 2 | 1.0 | 0.0 | 57. | | | 38.2 | 90% | 38% | 3 | 1.0 | 0.0 | 57. | | | 271 | 80% | 71% | 4 | 9.1 | 0.8 | 104 | | | 408 | 70% | 80% | + | 7.1 | 0.0 | 104 | | | 1360 | 40% | 91% | + + | | + | \vdash | | 48 hours | 338 | 71% | 79% | 1 | | + | \vdash | | 40 HOUIS | 338 | 71% | 19% | 1 2 | 1.0 | 0.0 | 60 | 38.2 14.5 271 408 1360 86% 100% 71% 57% 57% 38% 20% 71% 80% 91% 1.0 0.0 6.1 4 0.0 0.0 0.5 60.2 na 78.3 ### Hepatocyte growth factor sCr or UO | | 0 hr prior to AKI stage | | 24 hr prior to | 24 hr prior to AKI stage | | 48 hr prior to AKI stage | | |------------|-------------------------|----------|----------------|--------------------------|----------|--------------------------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 360.395 | 1297.169 | 360.395 | 1273.654 | 360.395 | 883.006 | | | average | 479.908 | 1833.085 | 479.908 | 1829.165 | 479.908 | 1210.215 | | | stdev | 456.701 | 2049.583 | 456.701 | 2049.918 | 456.701 | 899.150 | | | p (t-test) | | 0.000 | | 0.000 | | 0.000 | | | min | 27.880 | 86.357 | 27.880 | 86.357 | 27.880 | 86.357 | | | max | 2833.841 | 7839.221 | 2833.841 | 7839.221 | 2833.841 | 2726.014 | | | n (Samp) | 99 | 12 | 99 | 12 | 99 | 8 | | | n (Pat) | 99 | 12 | 99 | 12 | 99 | 8 | | sCr only | | 0 hr prior toAKI stage | | 24 hr prior to | 24 hr prior toAKI stage | | AKI stage | |------------|------------------------|----------|----------------|-------------------------|----------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 462.730 | 1297.169 | 462.730 | 1297.169 | 462.730 | 1273.654 | | average | 724.237 | 1247.930 | 724.237 | 1247.930 | 724.237 | 1221.653 | | stdev | 877.509 | 836.159 | 877.509 | 836.159 | 877.509 | 937.477 | | p (t-test) | | 0.153 | | 0.153 | | 0.265 | | min | 27.880 | 86.357 | 27.880 | 86.357 | 27.880 | 86.357 | | max | 7839.221 | 2252.946 | 7839.221 | 2252.946 | 7839.221 | 2252.946 | | n (Samp) | 160 | 6 | 160 | 6 | 160 | 4 | | n (Pat) | 160 | 6 | 160 | 6 | 160 | 4 | UO only | , | 0 hr prior toAKI stage | | 24 hr prior to | 24 hr prior toAKI stage | | 48 hr prior toAKI stage | | |------------|------------------------|----------|----------------|-------------------------|----------|-------------------------|--| | | Cohort 1 Cohort 2 | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 367.333 | 1297.169 | 367.333 | 1273.654 | 367.333 | 883.006 | | | average | 463.070 | 2137.972 | 463.070 | 2132.093 | 463.070 | 1223.736 | | | stdev | 399.975 | 2414.366 | 399.975 | 2415.658 | 399.975 | 813.371 | | | p (t-test) | | 0.000 | | 0.000 | | 0.000 | | | min | 27.880 | 468.837 | 27.880 | 468.837 | 27.880 | 468.837 | | | max | 2258.303 | 7839.221 | 2258.303 | 7839.221 | 2258.303 | 2726.014 | | | n (Samp) | 84 | 8 | 84 | 8 | 84 | 6 | | | n (Pat) | 84 | 8 | 84 | 8 | 84 | 6 | | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.83 | 0.075 | 99 | 12 | 0.000 | | 24 hours | 0.83 | 0.075 | 99 | 12 | 0.000 | | 48 hours | 0.78 | 0.099 | 99 | 8 | 0.005 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.71 | 0.121 | 160 | 6 | 0.085 | | 24 hours | 0.71 | 0.121 | 160 | 6 | 0.085 | | 48 hours | 0.67 | 0.151 | 160 | 4 | 0.262 | UO only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.90 | 0.073 | 84 | 8 | 0.000 | | 24 hours | 0.90 | 0.073 | 84 | 8 | 0.000 | | 48 hours | 0.87 | 0.095 | 84 | 6 | 0.000 | | | Cutoff | | | | 0.70 | 95% | CI of | |----------------------|-----------|------|------|----------|------|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 830.44724 | 75% | 83% | 1 | | | | | | 634.77395 | 83% | 78% | 2 | 0.0 | 0.0 | na | | | 468.66836 | 92% | 68% | 3 | 2.0 | 0.1 | 44.0 | | | 518.79418 | 83% | 71% | 4 | 12.3 | 1.2 | 130.0 | | | 739.74307 | 75% | 81% | | | | | | | 1069.5472 | 50% | 91% | | | | | | 24 hours | 830.44724 | 75% | 83% | 1 | I | 1 | 1 | |----------|-----------|------|-----|---|------|-----|-------| | | 634.77395 | 83% | 78% | 2 | 0.0 | 0.0 | na | | | 468.66836 | 92% | 68% | 3 | 2.0 | 0.1 | 44.0 | | | 518.79418 | 83% | 71% | 4 | 12.3 | 1.2 | 130.0 | | | 739.74307 | 75% | 81% | | | | | | | 1069.5472 | 50% | 91% | | | | | | 48 hours | 830.44724 | 75% | 83% | 1 | | | | | | 468.66836 | 88% | 68% | 2 | 0.0 | 0.0 | na | | | 85.423471 | 100% | 7% | 3 | 1.0 | 0.0 | 56.5 | | | 518.79418 | 75% | 71% | 4 | 7.1 | 0.6 | 83.5 | | | 739.74307 | 75% | 81% | | | | | | | 1069.5472 | 38% | 91% | | | | | sCr only | | Cutoff | | | | | 95% | CI of | |----------------------|-----------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 634.77395 | 83% | 62% | 1 | | | | | | 634.77395 | 83% | 62% | 2 | 0.0 | 0.0 | na | | | 85.423471 | 100% | 5% | 3 | 2.1 | 0.1 | 42.9 | | | 796.84426 | 67% | 70% | 4 | 3.1 | 0.2 | 46.4 | | | 1015.7457 | 50% | 80% | | | | | | | 1339.5034 | 50% | 90% | | | | | | 24 hours | 634.77395 | 83% | 62% | 1 | | | | | | 634.77395 | 83% | 62% | 2 | 0.0 | 0.0 | na | | | 85.423471 | 100% | 5% | 3 | 2.1 | 0.1 | 42.9 | | | 796.84426 | 67% | 70% | 4 | 3.1 | 0.2 | 46.4 | | | 1015.7457 | 50% | 80% | | | | | | | 1339.5034 | 50% | 90% | | | | | | 48 hours | 896.87138 | 75% | 74% | 1 | | | | | | 85.423471 | 100% | 5% | 2 | 0.0 | 0.0 | na | | | 85.423471 | 100% | 5% | 3 | 1.0 | 0.0 | 55.6 | | | 796.84426 | 75% | 70% | 4 | 2.1 | 0.1 | 42.9 | | | 1015.7457 | 50% | 80% | | | | | | | 1339.5034 | 50% | 90% | | | | | ### Interferon gamma sCr or UO | | 0 hr prior to AKI stage | | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | |------------|-------------------------|----------|----------------|-----------|--------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 10.950 | 20.700 | 10.950 | 20.650 | 10.950 | 16.500 | | average | 13.139 | 20.476 | 13.139 | 19.220 | 13.139 | 16.941 | | stdev | 9.279 | 7.995 | 9.279 | 8.981 | 9.279 | 8.908 | | p (t-test) | | 0.003 | | 0.016 | | 0.217 | | min | 0.819 | 5.350 | 0.819 | 5.350 | 0.819 | 3.190 | | max | 45.400 | 32.400 | 45.400 | 32.400 |
45.400 | 29.300 | | n (Samp) | 104 | 17 | 104 | 16 | 104 | 10 | | n (Pat) | 104 | 17 | 104 | 16 | 104 | 10 | sCr only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 12.650 | 21.850 | 12.650 | 21.850 | 12.650 | 20.700 | | average | 14.148 | 22.406 | 14.148 | 22.406 | 14.148 | 18.758 | | stdev | 9.443 | 8.528 | 9.443 | 8.528 | 9.443 | 9.006 | | p (t-test) | | 0.016 | | 0.016 | | 0.283 | | min | 0.819 | 5.350 | 0.819 | 5.350 | 0.819 | 3.190 | | max | 51.900 | 32.400 | 51.900 | 32.400 | 51.900 | 26.300 | | n (Samp) | 170 | 8 | 170 | 8 | 170 | 5 | | n (Pat) | 170 | 8 | 170 | 8 | 170 | 5 | UO only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | KI stage 48 hr prior toAKI stage | | | |------------|------------------------|----------|----------------|-----------|----------------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 10.500 | 20.700 | 10.500 | 16.550 | 10.500 | 12.400 | | | average | 12.151 | 19.323 | 12.151 | 17.197 | 12.151 | 17.046 | | | stdev | 8.210 | 6.895 | 8.210 | 8.131 | 8.210 | 8.406 | | | p (t-test) | | 0.007 | | 0.069 | | 0.134 | | | min | 0.819 | 6.850 | 0.819 | 6.850 | 0.819 | 7.320 | | | max | 37.300 | 29.300 | 37.300 | 29.300 | 37.300 | 29.300 | | | n (Samp) | 85 | 11 | 85 | 10 | 85 | 7 | | | n (Pat) | 85 | 11 | 85 | 10 | 85 | 7 | | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.74 | 0.072 | 104 | 17 | 0.001 | | 24 hours | 0.70 | 0.077 | 104 | 16 | 0.010 | | 48 hours | 0.64 | 0.098 | 104 | 10 | 0.154 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.76 | 0.101 | 170 | 8 | 0.011 | | 24 hours | 0.76 | 0.101 | 170 | 8 | 0.011 | | 48 hours | 0.66 | 0.135 | 170 | 5 | 0.235 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.76 | 0.087 | 85 | 11 | 0.003 | | 24 hours | 0.69 | 0.097 | 85 | 10 | 0.047 | | 48 hours | 0.69 | 0.115 | 85 | 7 | 0.097 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% (
OR | CI of | |----------------------|-----------------|------|------|----------|------|-------------|-------| | 0 hours | 17.5 | 71% | 74% | 1 | | | | | | 11.9 | 82% | 58% | 2 | 1.0 | 0.0 | 57.7 | | | 6.63 | 94% | 34% | 3 | 7.3 | 0.6 | 82.8 | | | 16.6 | 71% | 71% | 4 | 11.9 | 1.1 | 122.5 | | | 21.9 | 47% | 82% | | | | | | | 26.6 | 18% | 90% | | | | | |----------|------|-----|-----|---|------|-----|-------| | 24 hours | 11.6 | 75% | 55% | 1 | | | | | | 11.2 | 81% | 53% | 2 | 3.2 | 0.2 | 50.6 | | | 6.63 | 94% | 34% | 3 | 4.5 | 0.3 | 59.6 | | | 16.6 | 63% | 71% | 4 | 10.5 | 1.0 | 111.9 | | | 21.9 | 44% | 82% | | | | | | | 26.6 | 19% | 90% | | | | | | 48 hours | 11.6 | 70% | 55% | 1 | | | | | | 10.9 | 80% | 50% | 2 | 2.0 | 0.1 | 43.7 | | | 7.15 | 90% | 35% | 3 | 2.1 | 0.1 | 45.6 | | | 16.6 | 50% | 71% | 4 | 5.6 | 0.5 | 69.0 | | | 21.9 | 40% | 82% | | | | | | | 26.6 | 10% | 90% | | | | | sCr only | | Cutoff | | | | | 95% | CI of | |----------------------|--------|------|------|----------|--|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 20.5 | 75% | 76% | 1 | | | | | | 18.9 | 88% | 72% | 2 | 0.0 | 0.0 | na | | | 5.14 | 100% | 18% | 3 | 2.0 | 0.1 | 42.5 | | | 18.3 | 88% | 70% | 4 | 5.4 | 0.5 | 62.1 | | | 22 | 50% | 80% | | | | | | | 26.4 | 25% | 90% | | | | | | 24 hours | 20.5 | 75% | 76% | 1 | | | | | | 18.9 | 88% | 72% | 2 | 0.0 | 0.0 | na | | | 5.14 | 100% | 18% | 3 | 2.0 | 0.1 | 42.5 | | | 18.3 | 88% | 70% | 4 | 5.4 | 0.5 | 62.1 | | | 22 | 50% | 80% | | | | | | | 26.4 | 25% | 90% | | | | | | 48 hours | 20.5 | 80% | 76% | 1 | | | | | | 20.5 | 80% | 76% | 2 | 0.0 | 0.0 | na | | | 3.05 | 100% | 8% | 3 | 0.0 | 0.0 | na | | | 18.3 | 80% | 70% | 4 | 4.2 | 0.3 | 53.6 | | | 22 | 40% | 80% | | , and the second | | | | | 26.4 | 0% | 90% | | | | | #### Interleukin-16 sCr or UO | | 0 hr prior to A | AKI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|-----------------|-----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 12.800 | 186.000 | 12.800 | 207.500 | 12.800 | 61.050 | | average | 60.992 | 286.498 | 60.992 | 281.917 | 60.992 | 143.976 | | stdev | 174.084 | 342.862 | 174.084 | 320.362 | 174.084 | 187.847 | | p (t-test) | | 0.000 | | 0.000 | | 0.155 | | min | 0.265 | 0.265 | 0.265 | 0.265 | 0.265 | 0.265 | | max | 1100.000 | 1080.000 | 1100.000 | 1010.000 | 1100.000 | 599.000 | | n (Samp) | 104 | 17 | 104 | 16 | 104 | 10 | | n (Pat) | 104 | 17 | 104 | 16 | 104 | 10 | sCr only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 14.500 | 245.000 | 14.500 | 245.000 | 14.500 | 186.000 | | average | 67.841 | 341.363 | 67.841 | 307.613 | 67.841 | 141.540 | | stdev | 170.105 | 349.303 | 170.105 | 285.158 | 170.105 | 116.885 | | p (t-test) | | 0.000 | | 0.000 | | 0.338 | | min | 0.265 | 15.800 | 0.265 | 15.800 | 0.265 | 15.800 | | max | 1100.000 | 1080.000 | 1100.000 | 857.000 | 1100.000 | 261.000 | | n (Samp) | 170 | 8 | 170 | 8 | 170 | 5 | | n (Pat) | 170 | 8 | 170 | 8 | 170 | 5 | UO only | Ž | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 12.700 | 60.400 | 12.700 | 61.050 | 12.700 | 18.100 | | average | 56.021 | 221.606 | 56.021 | 234.786 | 56.021 | 144.424 | | stdev | 155.309 | 319.254 | 155.309 | 333.858 | 155.309 | 220.790 | | p (t-test) | | 0.005 | | 0.004 | | 0.165 | | min | 0.265 | 0.265 | 0.265 | 0.265 | 0.265 | 0.265 | | max | 891.000 | 1010.000 | 891.000 | 1010.000 | 891.000 | 599.000 | | n (Samp) | 85 | 11 | 85 | 10 | 85 | 7 | | n (Pat) | 85 | 11 | 85 | 10 | 85 | 7 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.81 | 0.066 | 104 | 17 | 0.000 | | 24 hours | 0.78 | 0.071 | 104 | 16 | 0.000 | | 48 hours | 0.71 | 0.095 | 104 | 10 | 0.028 | sCr only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.87 | 0.082 | 170 | 8 | 0.000 | | 24 hours | 0.87 | 0.083 | 170 | 8 | 0.000 | | 48 hours | 0.77 | 0.125 | 170 | 5 | 0.029 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.77 | 0.087 | 85 | 11 | 0.002 | | 24 hours | 0.72 | 0.095 | 85 | 10 | 0.020 | | 48 hours | 0.66 | 0.116 | 85 | 7 | 0.161 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% (| CI of OR | |----------------------|-----------------|------|------|----------|------|-------|----------| | 0 hours | 36.1 | 71% | 79% | 1 | | | | | | 17.6 | 82% | 62% | 2 | 0.0 | 0.0 | na | | | 14.6 | 94% | 59% | 3 | 5.8 | 0.5 | 70.5 | | | 22.2 | 71% | 70% | 4 | 16.0 | 1.6 | 159.7 | | | 45.4 | 65% | 81% | | | | | | | 92.3 | 59% | 90% | | | | | | 24 hours | 17.6 | 75% | 62% | 1 | | | | |----------|------|-----|-----|---
------|-----|-------| | | 17.5 | 81% | 62% | 2 | 1.0 | 0.0 | 57.7 | | | 10.5 | 94% | 46% | 3 | 4.5 | 0.3 | 59.6 | | | 22.2 | 63% | 70% | 4 | 14.5 | 1.4 | 147.8 | | | 45.4 | 63% | 81% | | | | | | | 92.3 | 63% | 90% | | | | | | 48 hours | 17.5 | 70% | 62% | 1 | | | | | | 14.6 | 80% | 59% | 2 | 1.0 | 0.0 | 56.0 | | | 10.5 | 90% | 46% | 3 | 3.2 | 0.2 | 51.4 | | | 22.2 | 50% | 70% | 4 | 5.6 | 0.5 | 69.0 | | | 45.4 | 50% | 81% | | | | , i | | | 92.3 | 50% | 90% | | | | | | | Cutoff | | | | | 95% | CI of | |----------------------|--------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 19.8 | 73% | 65% | 1 | | | | | | 17.6 | 82% | 61% | 2 | 0.0 | 0.0 | na | | | 17.5 | 91% | 61% | 3 | 3.3 | 0.2 | 53.6 | | | 22.2 | 64% | 71% | 4 | 9.5 | 0.8 | 108.7 | | | 36.1 | 64% | 80% | | | | | | | 73.5 | 45% | 91% | | | | | | 24 hours | 17.6 | 70% | 61% | 1 | | | | | | 17.5 | 80% | 61% | 2 | 1.0 | 0.0 | 57.4 | | | 10.5 | 90% | 47% | 3 | 3.1 | 0.2 | 51.5 | | | 22.2 | 50% | 71% | 4 | 5.8 | 0.5 | 73.7 | | | 36.1 | 50% | 80% | | | | | | | 73.5 | 50% | 91% | | | | | | 48 hours | 17.5 | 71% | 61% | 1 | | | | | | 10.5 | 86% | 47% | 2 | 1.0 | 0.0 | 60.2 | | | 0 | 100% | 0% | 3 | 2.1 | 0.1 | 47.6 | | | 22.2 | 43% | 71% | 4 | 3.3 | 0.2 | 54.3 | | | 36.1 | 43% | 80% | | | | | | | 73.5 | 43% | 91% | | | | | ### Interleukin-2 sCr or UO | | 0 hr prior to A | KI stage | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | | |------------|-----------------|----------|----------------|-----------|--------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 0.324 | 0.522 | 0.324 | 0.450 | 0.324 | 0.414 | | | average | 1.664 | 0.945 | 1.664 | 0.851 | 1.664 | 0.458 | | | stdev | 9.767 | 1.414 | 9.767 | 1.423 | 9.767 | 0.323 | | | p (t-test) | | 0.800 | | 0.775 | | 0.729 | | | min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | max | 96.860 | 5.260 | 96.860 | 5.260 | 96.860 | 1.141 | | | n (Samp) | 99 | 12 | 99 | 12 | 99 | 8 | | | n (Pat) | 99 | 12 | 99 | 12 | 99 | 8 | | sCr only | | 0 hr prior toA | .KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|----------------|-----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 0.410 | 0.501 | 0.410 | 0.365 | 0.410 | 0.501 | | | average | 1.711 | 0.573 | 1.711 | 0.493 | 1.711 | 0.511 | | | stdev | 8.128 | 0.441 | 8.128 | 0.469 | 8.128 | 0.190 | | | p (t-test) | | 0.733 | | 0.715 | | 0.769 | | | min | 0.000 | 0.107 | 0.000 | 0.107 | 0.000 | 0.301 | | | max | 96.860 | 1.383 | 96.860 | 1.383 | 96.860 | 0.742 | | | n (Samp) | 160 | 6 | 160 | 6 | 160 | 4 | | | n (Pat) | 160 | 6 | 160 | 6 | 160 | 4 | | UO only | COonly | | | | | | | | | |------------|-----------------|----------|----------------|-------------------|-------------------------|----------|--|--| | | 0 hr prior to A | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | | | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 1 Cohort 2 | | Cohort 2 | | | | median | 0.324 | 0.623 | 0.324 | 0.623 | 0.324 | 0.435 | | | | average | 1.922 | 1.232 | 1.922 | 1.152 | 1.922 | 0.489 | | | | stdev | 10.604 | 1.685 | 10.604 | 1.692 | 10.604 | 0.374 | | | | p (t-test) | | 0.855 | | 0.839 | | 0.743 | | | | min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | | max | 96.860 | 5.260 | 96.860 | 5.260 | 96.860 | 1.141 | | | | n (Samp) | 84 | 8 | 84 | 8 | 84 | 6 | | | | n (Pat) | 84 | 8 | 84 | 8 | 84 | 6 | | | sCr or UO | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.65 | 0.090 | 99 | 12 | 0.093 | | 24 hours | 0.61 | 0.091 | 99 | 12 | 0.214 | | 48 hours | 0.58 | 0.110 | 99 | 8 | 0.444 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.56 | 0.124 | 160 | 6 | 0.631 | | 24 hours | 0.49 | 0.120 | 160 | 6 | 0.958 | | 48 hours | 0.56 | 0.151 | 160 | 4 | 0.671 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.70 | 0.107 | 84 | 8 | 0.059 | | 24 hours | 0.69 | 0.108 | 84 | 8 | 0.077 | | 48 hours | 0.61 | 0.126 | 84 | 6 | 0.392 | | | Cutoff | | | | | 95% | CI of | |----------------------|-----------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 0.3502873 | 75% | 55% | 1 | | | | | | 0.2275537 | 83% | 43% | 2 | 2.0 | 0.1 | 44.0 | | | 0.1007266 | 92% | 36% | 3 | 4.3 | 0.3 | 58.8 | | | 0.4943534 | 50% | 71% | 4 | 5.7 | 0.5 | 69.7 | | | 0.7994405 | 25% | 81% | | | | | | | 2.092275 | 8% | 91% | | | | | | 24 hours | 0.2275537 | 75% | 43% | 1 | | | | |----------|-----------|------|-----|---|-----|-----|------| | | 0.1603607 | 83% | 41% | 2 | 3.1 | 0.2 | 49.6 | | | 0.1007266 | 92% | 36% | 3 | 4.3 | 0.3 | 58.8 | | | 0.4943534 | 42% | 71% | 4 | 4.3 | 0.3 | 58.8 | | | 0.7994405 | 17% | 81% | | | | | | | 2.092275 | 8% | 91% | | | | | | 48 hours | 0.3502873 | 75% | 55% | 1 | | | | | | 0.2275537 | 88% | 43% | 2 | 1.0 | 0.0 | 56.5 | | | 0 | 100% | 0% | 3 | 4.3 | 0.3 | 59.3 | | | 0.4943534 | 25% | 71% | 4 | 2.0 | 0.1 | 44.3 | | | 0.7994405 | 13% | 81% | | | | | | | 2.092275 | 0% | 91% | | | | | sCr only | , ca only | C-+-CC | ı | | 1 | | 95% | OI - C | |----------------------|-----------|------|------|----------|-----|-----|--------| | 1 | Cutoff | | | | | 1 ' | CIOI | | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 0.2957788 | 83% | 34% | 1 | | | | | | 0.2957788 | 83% | 34% | 2 | na | na | na | | | 0.1007266 | 100% | 28% | 3 | na | na | na | | | 0.6304922 | 33% | 70% | 4 | na | na | na | | | 0.8830422 | 17% | 80% | | | | | | | 2.2250583 | 0% | 90% | | | | | | 24 hours | 0.1603607 | 83% | 31% | 1 | | | | | | 0.1603607 | 83% | 31% | 2 | 2.1 | 0.1 | 43.9 | | | 0.1007266 | 100% | 28% | 3 | 3.2 | 0.2 | 47.5 | | | 0.6304922 | 17% | 70% | 4 | 0.0 | 0.0 | na | | | 0.8830422 | 17% | 80% | | | | | | | 2.2250583 | 0% | 90% | | | | | | 48 hours | 0.4241216 | 75% | 52% | 1 | | | | | | 0.2957788 | 100% | 34% | 2 | na | na | na | | | 0.2957788 | 100% | 34% | 3 | na | na | na | | | 0.6304922 | 25% | 70% | 4 | na | na | na | | | 0.8830422 | 0% | 80% | | | | | | | 2.2250583 | 0% | 90% | | | | | | | Cutoff | | | | | 95% | CI of | |----------------------|-----------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 0.4617212 | 75% | 69% | 1 | | | | | | 0.3502873 | 88% | 57% | 2 | 0.0 | 0.0 | na | | | 0 | 100% | 0% | 3 | 4.6 | 0.3 | 65.0 | | | 0.4896804 | 63% | 70% | 4 | 3.3 | 0.2 | 54.3 | | | 0.8413233 | 38% | 81% | | | | | | | 2.7380733 | 13% | 90% | | | | | | 24 hours | 0.4617212 | 75% | 69% | 1 | | | | | | 0.3502873 | 88% | 57% | 2 | na | na | na | | | 0 | 100% | 0% | 3 | na | na | na | | | 0.4896804 | 63% | 70% | 4 | na | na | na | | | 0.8413233 | 25% | 81% | | | | | | | 2.7380733 | 13% | 90% | | | | | | 48 hours | 0.3502873 | 83% | 57% | 1 | | | | | | 0.3502873 | 83% | 57% | 2 | 0.0 | 0.0 | na | | | 0 | 100% | 0% | 3 | 3.3 | 0.2 | 55.1 | | | 0.4896804 | 33% | 70% | 4 | 2.0 | 0.1 | 45.6 | | | 0.8413233 | 17% | 81% | | | | | | | 2.7380733 | 0% | 90% | | | | | ### Interleukin-12 p40 sCr or UO | | 0 hr prior to A | KI stage | 24 hr prior to AKI stage | | 48 hr prior to AKI stage | | |------------|-----------------|----------|--------------------------|----------|--------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 6.940 | 4.762 | 6.940 | 3.096 | 6.940 | 3.096 | | average | 10.369 | 9.575 | 10.369 | 8.958 | 10.369 | 11.752 | | stdev | 13.459 | 14.343 | 13.459 | 14.602 | 13.459 | 17.367 | | p (t-test) | | 0.848 | | 0.735 | | 0.785 | | min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | max | 66.881 | 49.268 | 66.881 | 49.268 | 66.881 | 49.268 | | n (Samp) | 99 | 12 | 99 | 12 | 99 | 8 | | n (Pat) | 99 | 12 | 99 | 12 | 99 | 8 | sCr only | | 0 hr prior toA | .KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|-----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 8.396 | 6.658 | 8.396 | 4.246 | 8.396 | 13.383 | | average | 11.419 | 14.892 | 11.419 | 13.658 | 11.419 | 19.008 | | stdev | 13.224 | 18.858 | 13.224 | 19.671 | 13.224 | 22.903 | | p (t-test) | | 0.535 | | 0.690 | | 0.267 | | min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | max | 66.881 | 49.268 | 66.881 | 49.268 | 66.881 | 49.268 | | n (Samp) | 160 | 6 | 160 | 6 | 160 | 4 | | n (Pat) | 160 | 6 | 160 | 6 | 160 | 4 | UO only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 7.005 | 2.218 | 7.005 | 2.218 | 7.005 | 2.218 | | average | 10.395 | 9.352 | 10.395 | 9.352 | 10.395 | 11.208 | | stdev | 12.676 | 16.827 | 12.676 | 16.827 | 12.676 | 19.343 | | p (t-test) | | 0.830 | | 0.830 | | 0.884 | | min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | max | 61.635 | 49.268 | 61.635 | 49.268 | 61.635 | 49.268 | | n (Samp) | 84 | 8 | 84 | 8 | 84 | 6 | | n (Pat) | 84 | 8 | 84 | 8 | 84 | 6 | sCr or UO | AKI stage | AUC | SE | nConort 1 | nConort 2 | р | |-----------|------|-------|-----------|-----------|-------| | 0 hours | 0.47 | 0.087 | 99 | 12 | 0.731 | | 24 hours | 0.44 | 0.085 | 99 | 12 | 0.470 | | 48 hours | 0.50 | 0.106 | 99 | 8 | 0.972 | sCr only | Time prior | AUC | SE |
nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.53 | 0.122 | 160 | 6 | 0.808 | | 24 hours | 0.47 | 0.118 | 160 | 6 | 0.801 | | 48 hours | 0.57 | 0.151 | 160 | 4 | 0.649 | UO only | | Time prior
ΛKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |---|-------------------------|------|-------|-----------|-----------|-------| | [| 0 hours | 0.41 | 0.100 | 84 | 8 | 0.372 | | | 24 hours | 0.41 | 0.100 | 84 | 8 | 0.372 | | ſ | 48 hours | 0.44 | 0.117 | 84 | 6 | 0.587 | | | Cutoff | | | | | 95% | CI of | |----------------------|-----------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 0.2877802 | 75% | 30% | 1 | | | | | | 0 | 100% | 0% | 2 | 1.6 | 0.3 | 9.3 | | | 0 | 100% | 0% | 3 | 2.2 | 0.4 | 11.0 | | | 14.053599 | 17% | 71% | 4 | 1.6 | 0.3 | 9.7 | | | 18.778128 | 17% | 81% | | | | | | | 26.148501 | 8% | 91% | | | | | | 24 hours | 0 | 100% | 0% | 1 | | | | |----------|-----------|------|-----|---|-----|-----|------| | | 0 | 100% | 0% | 2 | 1.6 | 0.3 | 9.3 | | | 0 | 100% | 0% | 3 | 1.6 | 0.3 | 9.3 | | | 14.053599 | 17% | 71% | 4 | 2.3 | 0.4 | 11.5 | | | 18.778128 | 17% | 81% | | | | | | | 26.148501 | 8% | 91% | | | | | | 48 hours | 0.2877802 | 75% | 30% | 1 | | | | | | 0 | 100% | 0% | 2 | 0.5 | 0.0 | 10.6 | | | 0 | 100% | 0% | 3 | 1.6 | 0.3 | 9.4 | | | 14.053599 | 25% | 71% | 4 | 1.0 | 0.1 | 8.7 | | | 18.778128 | 25% | 81% | | | | | | | 26.148501 | 13% | 91% | | | | | sCr only | | Cutoff | | | | | 95% | CI of | |----------------------|-----------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 2.5686249 | 83% | 32% | 1 | | | | | | 2.5686249 | 83% | 32% | 2 | 3.1 | 0.2 | 46.4 | | | 0 | 100% | 0% | 3 | 0.0 | 0.0 | na | | | 14.524637 | 33% | 70% | 4 | 2.0 | 0.1 | 41.7 | | | 18.806933 | 33% | 80% | | | | | | | 27.054283 | 17% | 90% | | | | | | 24 hours | 0 | 100% | 0% | 1 | | | | | | 0 | 100% | 0% | 2 | 0.0 | 0.0 | na | | | 0 | 100% | 0% | 3 | 1.0 | 0.1 | 7.8 | | | 14.524637 | 33% | 70% | 4 | 1.0 | 0.1 | 8.0 | | | 18.806933 | 33% | 80% | | | | | | | 27.054283 | 17% | 90% | | | | | | 48 hours | 2.5686249 | 75% | 32% | 1 | | | | | | 0 | 100% | 0% | 2 | 1.0 | 0.0 | 55.6 | | | 0 | 100% | 0% | 3 | 0.0 | 0.0 | na | | | 14.524637 | 50% | 70% | 4 | 2.1 | 0.1 | 42.9 | | | 18.806933 | 50% | 80% | | | | | | | 27.054283 | 25% | 90% | | | | | | • | Cutoff | | | | | 95% | CI of | |----------------------|-----------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 0 | 100% | 0% | 1 | | | | | | 0 | 100% | 0% | 2 | 2.1 | 0.1 | 47.6 | | | 0 | 100% | 0% | 3 | 4.6 | 0.3 | 65.0 | | | 14.053599 | 13% | 70% | 4 | 1.0 | 0.0 | 60.2 | | | 18.778128 | 13% | 81% | | | | | | | 24.423486 | 13% | 90% | | | | | | 24 hours | 0 | 100% | 0% | 1 | | | | | | 0 | 100% | 0% | 2 | 2.1 | 0.1 | 47.6 | | | 0 | 100% | 0% | 3 | 4.6 | 0.3 | 65.0 | | | 14.053599 | 13% | 70% | 4 | 1.0 | 0.0 | 60.2 | | | 18.778128 | 13% | 81% | | | | | | | 24.423486 | 13% | 90% | | | | | | 48 hours | 0 | 100% | 0% | 1 | | | | | | 0 | 100% | 0% | 2 | 1.0 | 0.0 | 63.4 | | | 0 | 100% | 0% | 3 | 2.1 | 0.1 | 47.6 | | | 14.053599 | 17% | 70% | 4 | 2.2 | 0.1 | 50.2 | | | 18.778128 | 17% | 81% | | | | | | | 24.423486 | 17% | 90% | | | | | #### Matrix metalloproteinase-2 | | | _ | | |------|----|---|----------| | e Ce | 00 | 1 | Γ | | | | | | U.S. Patent | | 0 hr prior to A | KI stage | 24 hr prior to AKI stage | | 48 hr prior to | AKI stage | |------------|-----------------|----------|--------------------------|----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 27.450 | 55.600 | 27.450 | 57.300 | 27.450 | 33.250 | | average | 34.955 | 125.176 | 34.955 | 128.300 | 34.955 | 47.050 | | stdev | 32.704 | 299.597 | 32.704 | 308.608 | 32.704 | 35.697 | | p (t-test) | | 0.003 | | 0.003 | | 0.270 | | min | 0.600 | 11.000 | 0.600 | 11.000 | 0.600 | 11.000 | | max | 293.000 | 1280.000 | 293.000 | 1280.000 | 293.000 | 116.000 | | n (Samp) | 104 | 17 | 104 | 16 | 104 | 10 | | n (Pat) | 104 | 17 | 104 | 16 | 104 | 10 | sCr only | Ť | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|----------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 28.000 | 76.250 | 28.000 | 76.250 | 28.000 | 81.900 | | average | 44.722 | 76.250 | 44.722 | 76.250 | 44.722 | 74.720 | | stdev | 102.888 | 36.398 | 102.888 | 36.398 | 102.888 | 38.522 | | p (t-test) | | 0.390 | | 0.390 | | 0.517 | | min | 0.600 | 11.000 | 0.600 | 11.000 | 0.600 | 11.000 | | max | 1280.000 | 129.000 | 1280.000 | 129.000 | 1280.000 | 116.000 | | n (Samp) | 170 | 8 | 170 | 8 | 170 | 5 | | n (Pat) | 170 | 8 | 170 | 8 | 170 | 5 | UO only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|------------------------|----------|-------------------|-----------|-------------------------|----------| | | Cohort 1 Cohort 2 | | Cohort 1 Cohort 2 | | Cohort 1 | Cohort 2 | | median | 28.000 | 32.700 | 28.000 | 33.250 | 28.000 | 32.700 | | average | 36.566 | 157.173 | 36.566 | 165.370 | 36.566 | 37.500 | | stdev | 35.106 | 373.944 | 35.106 | 392.435 | 35.106 | 24.576 | | p (t-test) | | 0.004 | | 0.003 | | 0.945 | | min | 0.600 | 19.000 | 0.600 | 19.200 | 0.600 | 12.400 | | max | 293.000 | 1280.000 | 293.000 | 1280.000 | 293.000 | 81.900 | | n (Samp) | 85 | 11 | 85 | 10 | 85 | 7 | | n (Pat) | 85 | 11 | 85 | 10 | 85 | 7 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.68 | 0.076 | 104 | 17 | 0.019 | | 24 hours | 0.68 | 0.078 | 104 | 16 | 0.020 | | 48 hours | 0.58 | 0.099 | 104 | 10 | 0.421 | sCr only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.81 | 0.093 | 170 | 8 | 0.001 | | 24 hours | 0.81 | 0.093 | 170 | 8 | 0.001 | | 48 hours | 0.76 | 0.126 | 170 | 5 | 0.038 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.61 | 0.095 | 85 | 11 | 0.269 | | 24 hours | 0.60 | 0.100 | 85 | 10 | 0.304 | | 48 hours | 0.53 | 0.116 | 85 | 7 | 0.816 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | |----------------------|-----------------|------|------|----------|-----|-------|---------| | 0 hours | 31.2 | 71% | 63% | 1 | | | | | | 20.6 | 82% | 29% | 2 | 0.6 | 0.1 | 3.8 | | | 18.5 | 94% | 21% | 3 | 1.0 | 0.2 | 4.3 | | | 34.5 | 53% | 70% | 4 | 3.7 | 1.3 | 10.3 | | | 42.7 | 53% | 81% | | | | | | | 61.1 | 41% | 90% | | | | | | 24 hours | 22 | 75% | 34% | 1 | | | | |----------|------|-----|-----|---|-----|-----|------| | | 20.6 | 81% | 29% | 2 | 0.6 | 0.1 | 3.8 | | | 18.5 | 94% | 21% | 3 | 0.6 | 0.1 | 3.8 | | | 34.5 | 56% | 70% | 4 | 3.9 | 1.4 | 10.9 | | | 42.7 | 56% | 81% | | | | | | | 61.1 | 44% | 90% | | | | | | 48 hours | 22 | 70% | 34% | 1 | | | | | | 20 | 80% | 25% | 2 | 1.0 | 0.1 | 7.9 | | | 11 | 90% | 4% | 3 | 1.0 | 0.1 | 8.3 | | | 34.5 | 40% | 70% | 4 | 2.1 | 0.4 | 10.6 | | | 42.7 | 40% | 81% | | | | | | | 61.1 | 30% | 90% | | | | | sCr only | CI OHIY | | | | | | | | |----------------------|--------|------|------|----------|------|-------|---------| | | Cutoff | | | 0 | o.p. | 0.5% | r con | | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 63.1 | 75% | 91% | 1 | | | | | | 53.4 | 88% | 84% | 2 | 0.0 | 0.0 | na | | | 9.49 | 100% | 2% | 3 | 0.0 | 0.0 | na | | | 37.6 | 88% | 70% | 4 | 7.9 | 0.8 | 82.0 | | | 45.9 | 88% | 80% | | | | | | | 62.8 | 75% | 90% | | | | | | 24 hours | 63.1 | 75% | 91% | 1 | | | | | | 53.4 | 88% | 84% | 2 | 0.0 | 0.0 | na | | | 9.49 | 100% | 2% | 3 | 0.0 | 0.0 | na | | | 37.6 | 88% | 70% | 4 | 7.9 | 0.8 | 82.0 | | | 45.9 | 88% | 80% | | | | | | | 62.8 | 75% | 90% | | | | | | 48 hours | 77.3 | 80% | 94% | 1 | | | | | | 77.3 | 80% | 94% | 2 | 0.0 | 0.0 | na | | | 9.49 | 100% | 2% | 3 | 0.0 | 0.0 | na | | | 37.6 | 80% | 70% | 4 | 4.2 | 0.3 | 53.6 | | | 45.9 | 80% | 80% | | | | | | | 62.8 | 80% | 90% | | | | | | • | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 22 | 73% | 29% | 1 | | | | | | 20.6 | 82% | 25% | 2 | 0.3 | 0.0 | 5.0 | | | 19 | 91% | 18% | 3 | 1.0 | 0.2 | 4.5 | | | 35.1 | 36% | 71% | 4 | 1.4 | 0.4 | 5.3 | | | 42.7 | 36% | 80% | | | | | | | 61.1 | 27% | 91% | | | | | | 24 hours | 22 | 70% | 29% | 1 | | | | | | 20.6 | 80% | 25% | 2 | 1.0 | 0.1 | 8.1 | | | 19.4 | 90% | 21% | 3 | 1.0 | 0.1 | 8.1 | | | 35.1 | 40% | 71% | 4 | 2.1 | 0.4 | 11.1 | | | 42.7 | 40% | 80% | | | | | | | 61.1 | 30% | 91% | | | | | | 48 hours | 22 | 71% | 29% | 1 | | | | | | 19.4 | 86% | 21% | 2 | 0.5 | 0.0 | 10.8 | | | 0.6 | 100% | 1% | 3 | 1.0 | 0.1 | 8.6 | | | 35.1 | 29% | 71% | 4 | 1.0 | 0.1 | 8.6 | | | 42.7 | 29% | 80% | | | | | | | 61.1 | 14% | 91% | | | | | Midkine sCr or UO | | 0 hr prior to AKI stage | | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | |------------|-------------------------|----------|----------------|-----------|--------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 0.079 | 0.677 | 0.079 | 0.279 | 0.079 | 0.273 | | average | 0.354 | 1.061 | 0.354 | 0.713 | 0.354 | 0.374 | | stdev | 1.120 | 1.185 | 1.120 | 1.061 | 1.120 | 0.307 | | p (t-test) | | 0.036 | | 0.274 | | 0.957 | | min | 0.000 | 0.058 | 0.000 | 0.058
| 0.000 | 0.058 | | max | 8.902 | 4.142 | 8.902 | 4.142 | 8.902 | 0.923 | | n (Samp) | 67 | 14 | 67 | 14 | 67 | 9 | | n (Pat) | 67 | 14 | 67 | 14 | 67 | 9 | sCr only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 0.132 | 0.558 | 0.132 | 0.279 | 0.132 | 0.285 | | average | 0.351 | 0.992 | 0.351 | 0.869 | 0.351 | 0.462 | | stdev | 0.966 | 1.327 | 0.966 | 1.384 | 0.966 | 0.375 | | p (t-test) | | 0.079 | | 0.156 | | 0.797 | | min | 0.000 | 0.073 | 0.000 | 0.062 | 0.000 | 0.073 | | max | 8.902 | 4.142 | 8.902 | 4.142 | 8.902 | 1.010 | | n (Samp) | 116 | 8 | 116 | 8 | 116 | 5 | | n (Pat) | 116 | 8 | 116 | 8 | 116 | 5 | UO only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 0.078 | 0.960 | 0.078 | 0.478 | 0.078 | 0.258 | | average | 0.404 | 1.060 | 0.404 | 0.574 | 0.404 | 0.390 | | stdev | 1.251 | 0.967 | 1.251 | 0.447 | 1.251 | 0.337 | | p (t-test) | | 0.163 | | 0.708 | | 0.978 | | min | 0.000 | 0.058 | 0.000 | 0.058 | 0.000 | 0.058 | | max | 8.902 | 3.139 | 8.902 | 1.238 | 8.902 | 0.923 | | n (Samp) | 51 | 8 | 51 | 8 | 51 | 6 | | n (Pat) | 51 | 8 | 51 | 8 | 51 | 6 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.83 | 0.070 | 67 | 14 | 0.000 | | 24 hours | 0.73 | 0.081 | 67 | 14 | 0.004 | | 48 hours | 0.71 | 0.102 | 67 | 9 | 0.043 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.80 | 0.096 | 116 | 8 | 0.002 | | 24 hours | 0.69 | 0.107 | 116 | 8 | 0.084 | | 48 hours | 0.72 | 0.131 | 116 | 5 | 0.088 | | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.83 | 0.092 | 51 | 8 | 0.000 | | 24 hours | 0.75 | 0.105 | 51 | 8 | 0.017 | | 48 hours | 0.68 | 0.126 | 51 | 6 | 0.147 | ### Serum amyloid P-component sCr or UO | | 0 hr prior to AKI stage | | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | | |------------|-------------------------|----------|----------------|-----------|--------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 1.543 | 12.744 | 1.543 | 12.744 | 1.543 | 9.597 | | | average | 5.522 | 25.254 | 5.522 | 25.254 | 5.522 | 9.203 | | | stdev | 10.915 | 41.036 | 10.915 | 41.036 | 10.915 | 7.157 | | | p (t-test) | | 0.000 | | 0.000 | | 0.352 | | | min | 0.093 | 0.431 | 0.093 | 0.431 | 0.093 | 0.431 | | | max | 58.307 | 152.000 | 58.307 | 152.000 | 58.307 | 22.353 | | | n (Samp) | 96 | 12 | 96 | 12 | 96 | 8 | | | n (Pat) | 96 | 12 | 96 | 12 | 96 | 8 | | sCr only | Ĭ | 0 hr prior toΛKI stage | | 24 hr prior to/ | \KI stage | 48 hr prior to∧KI stage | | | |------------|------------------------|----------|-----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 2.591 | 14.400 | 2.591 | 14.400 | 2.591 | 12.744 | | | average | 7.376 | 16.430 | 7.376 | 16.430 | 7.376 | 15.112 | | | stdev | 15.365 | 11.373 | 15.365 | 11.373 | 15.365 | 14.188 | | | p (t-test) | | 0.156 | | 0.156 | | 0.321 | | | min | 0.093 | 0.431 | 0.093 | 0.431 | 0.093 | 0.431 | | | max | 152.000 | 34.528 | 152.000 | 34.528 | 152.000 | 34.528 | | | n (Samp) | 157 | 6 | 157 | 6 | 157 | 4 | | | n (Pat) | 157 | 6 | 157 | 6 | 157 | 4 | | UO only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 1.585 | 12.398 | 1.585 | 12.398 | 1.585 | 9.597 | | | average | 5.882 | 31.429 | 5.882 | 31.429 | 5.882 | 10.025 | | | stdev | 11.052 | 49.792 | 11.052 | 49.792 | 11.052 | 7.249 | | | p (t-test) | | 0.000 | | 0.000 | | 0.370 | | | min | 0.093 | 2.799 | 0.093 | 2.799 | 0.093 | 2.799 | | | max | 58.307 | 152.000 | 58.307 | 152.000 | 58.307 | 22.353 | | | n (Samp) | 82 | 8 | 82 | 8 | 82 | 6 | | | n (Pat) | 82 | 8 | 82 | 8 | 82 | 6 | | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.82 | 0.077 | 96 | 12 | 0.000 | | 24 hours | 0.82 | 0.077 | 96 | 12 | 0.000 | | 48 hours | 0.74 | 0.103 | 96 | 8 | 0.018 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.76 | 0.116 | 157 | 6 | 0.028 | | 24 hours | 0.76 | 0.116 | 157 | 6 | 0.028 | | 48 hours | 0.69 | 0.149 | 157 | 4 | 0.206 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.86 | 0.086 | 82 | 8 | 0.000 | | 24 hours | 0.86 | 0.086 | 82 | 8 | 0.000 | | 48 hours | 0.81 | 0.110 | 82 | 6 | 0.005 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | |----------------------|-----------------|------|------|----------|------|-------|---------| | 0 hours | 11.50007 | 75% | 89% | 1 | | | | | | 3.3281087 | 83% | 73% | 2 | 0.0 | 0.0 | na | | | 2.7653229 | 92% | 66% | 3 | 2.1 | 0.1 | 45.9 | | | 3.26012 | 83% | 71% | 4 | 13.0 | 1.2 | 138.0 | | | 6.0497473 | 75% | 80% | | | | | | | 13.046066 | 42% | 91% | | | | | | 24 hours | 11.50007 | 75% | 89% | 1 | | | | |----------|-----------|------|-----|---|------|-----|-------| | | 3.3281087 | 83% | 73% | 2 | 0.0 | 0.0 | na | | | 2.7653229 | 92% | 66% | 3 | 2.1 | 0.1 | 45.9 | | | 3.26012 | 83% | 71% | 4 | 13.0 | 1.2 | 138.0 | | | 6.0497473 | 75% | 80% | | | | | | | 13.046066 | 42% | 91% | | | | | | 48 hours | 3.3281087 | 75% | 73% | 1 | | | | | | 2.7653229 | 88% | 66% | 2 | 0.0 | 0.0 | na | | | 0.3460298 | 100% | 13% | 3 | 2.1 | 0.1 | 46.2 | | | 3.26012 | 75% | 71% | 4 | 6.0 | 0.5 | 74.3 | | | 6.0497473 | 63% | 80% | | | | | | | 13.046066 | 13% | 91% | | | | | | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 12.354421 | 83% | 84% | 1 | | | | | | 12.354421 | 83% | 84% | 2 | 0.0 | 0.0 | na | | | 0.3715084 | 100% | 10% | 3 | 0.0 | 0.0 | na | | | 5.8831817 | 83% | 70% | 4 | 5.4 | 0.5 | 63.2 | | | 10.004281 | 83% | 81% | | | | | | | 20.878347 | 33% | 90% | | | | | | 24 hours | 12.354421 | 83% | 84% | 1 | | | | | | 12.354421 | 83% | 84% | 2 | 0.0 | 0.0 | na | | | 0.3715084 | 100% | 10% | 3 | 0.0 | 0.0 | na | | | 5.8831817 | 83% | 70% | 4 | 5.4 | 0.5 | 63.2 | | | 10.004281 | 83% | 81% | | | | | | | 20.878347 | 33% | 90% | | | | | | 48 hours | 12.354421 | 75% | 84% | 1 | | | | | | 0.3715084 | 100% | 10% | 2 | 0.0 | 0.0 | na | | | 0.3715084 | 100% | 10% | 3 | 0.0 | 0.0 | na | | | 5.8831817 | 75% | 70% | 4 | 3.1 | 0.2 | 46.5 | | | 10.004281 | 75% | 81% | | · | | | | | 20.878347 | 25% | 90% | | | | | #### Matrix metalloproteinase-9 | c Cr | Or | Т | IO | |------|----|---|----| | | | | | U.S. Patent | | 0 hr prior to A | AKI stage | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | | |------------|-----------------|------------|----------------|------------|--------------------------|------------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 2548.413 | 11219.932 | 2548.413 | 11219.932 | 2548.413 | 28219.287 | | | average | 12780.174 | 30494.072 | 12780.174 | 30381.575 | 12780.174 | 42212.294 | | | stdev | 27271.206 | 39052.282 | 27271.206 | 39145.007 | 27271.206 | 43754.117 | | | p (t-test) | | 0.046 | | 0.047 | | 0.006 | | | min | 32.788 | 413.469 | 32.788 | 221.527 | 32.788 | 331.428 | | | max | 159217.283 | 112264.995 | 159217.283 | 112264.995 | 159217.283 | 112264.995 | | | n (Samp) | 98 | 12 | 98 | 12 | 98 | 8 | | | n (Pat) | 98 | 12 | 98 | 12 | 98 | 8 | | sCr only | | 0 hr prior toA | .KI stage | 24 hr prior toAKI stage | | 48 hr prior to | AKI stage | |------------|----------------|-----------|-------------------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 5297.651 | 11219.932 | 5297.651 | 11219.932 | 5297.651 | 11219.932 | | average | 20060.467 | 19955.002 | 20060.467 | 19730.008 | 20060.467 | 26298.712 | | stdev | 35159.374 | 31036.604 | 35159.374 | 31200.983 | 35159.374 | 37720.689 | | p (t-test) | | 0.994 | | 0.982 | | 0.727 | | min | 32.788 | 413.469 | 32.788 | 221.527 | 32.788 | 413.469 | | max | 176209.055 | 82341.516 | 176209.055 | 82341.516 | 176209.055 | 82341.516 | | n (Samp) | 159 | 6 | 159 | 6 | 159 | 4 | | n (Pat) | 159 | 6 | 159 | 6 | 159 | 4 | UO only | | 0 hr prior toΛ | KI stage | 24 hr prior to∧KI stage | | 48 hr prior toΛKI stage | | |------------|----------------|------------|-------------------------|------------|-------------------------|------------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 3489.739 | 27000.645 | 3489.739 | 27000.645 | 3489.739 | 61123.989 | | average | 14156.222 | 42317.708 | 14156.222 | 42317.708 | 14156.222 | 54141.052 | | stdev | 29193.825 | 43560.839 | 29193.825 | 43560.839 | 29193.825 | 44527.680 | | p (t-test) | | 0.015 | | 0.015 | | 0.002 | | min | 32.788 | 1903.662 | 32.788 | 1903.662 | 32.788 | 331.428 | | max | 159217.283 | 112264.995 |
159217.283 | 112264.995 | 159217.283 | 112264.995 | | n (Samp) | 83 | 8 | 83 | 8 | 83 | 6 | | n (Pat) | 83 | 8 | 83 | 8 | 83 | 6 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | Р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.69 | 0.088 | 98 | 12 | 0.029 | | 24 hours | 0.67 | 0.090 | 98 | 12 | 0.061 | | 48 hours | 0.70 | 0.107 | 98 | 8 | 0.065 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.57 | 0.124 | 159 | 6 | 0.583 | | 24 hours | 0.53 | 0.122 | 159 | 6 | 0.810 | | 48 hours | 0.60 | 0.152 | 159 | 4 | 0.501 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.75 | 0.103 | 83 | 8 | 0.017 | | 24 hours | 0.75 | 0.103 | 83 | 8 | 0.017 | | 48 hours | 0.75 | 0.118 | 83 | 6 | 0.032 | | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 2026.199 | 75% | 45% | 1 | | | | | | 1859.8427 | 83% | 42% | 2 | 3.1 | 0.2 | 49.6 | | | 1482.9443 | 92% | 38% | 3 | 1.0 | 0.0 | 58.6 | | | 6948.9906 | 67% | 70% | 4 | 8.7 | 0.8 | 96.4 | | | 10936.729 | 50% | 81% | | | | | |----------|-----------|------|-----|---|-----|-----|------| | | 44000 | 25% | 91% | | | | | | 24 hours | 2026.199 | 75% | 45% | 1 | | | | | | 1859.8427 | 83% | 42% | 2 | 1.0 | 0.1 | 8.0 | | | 397.66566 | 92% | 14% | 3 | 0.5 | 0.0 | 10.6 | | | 6948.9906 | 67% | 70% | 4 | 4.2 | 1.0 | 17.4 | | | 10936.729 | 50% | 81% | | | | | | | 44000 | 25% | 91% | | | | | | 48 hours | 7647.3802 | 75% | 71% | 1 | | | | | | 397.66566 | 88% | 14% | 2 | 0.0 | 0.0 | na | | | 307.74357 | 100% | 11% | 3 | 0.5 | 0.0 | 10.7 | | | 6948.9906 | 75% | 70% | 4 | 2.7 | 0.6 | 12.8 | | | 10936.729 | 63% | 81% | | | | | | | 44000 | 38% | 91% | | | | | sCr only | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | T of OR | |----------------------|-----------------|------|------|----------|-----|-------|---------| | 0 hours | 1482.9443 | 83% | 28% | 1 | | | | | | 1482.9443 | 83% | 28% | 2 | 1.0 | 0.0 | 55.6 | | | 397.66566 | 100% | 11% | 3 | 3.2 | 0.2 | 47.6 | | | 12108.63 | 50% | 70% | 4 | 1.0 | 0.0 | 54.2 | | | 25535.993 | 17% | 81% | | | | | | | 70809.57 | 17% | 91% | | | | | | 24 hours | 397.66566 | 83% | 11% | 1 | | | | | | 397.66566 | 83% | 11% | 2 | 0.0 | 0.0 | na | | | 200.74676 | 100% | 5% | 3 | 1.5 | 0.3 | 8.7 | | | 12108.63 | 50% | 70% | 4 | 0.5 | 0.0 | 9.9 | | | 25535.993 | 17% | 81% | | | | | | | 70809.57 | 17% | 91% | | | | | | 48 hours | 9616.4598 | 75% | 67% | 1 | | | | | | 397.66566 | 100% | 11% | 2 | 0.0 | 0.0 | na | | | 397.66566 | 100% | 11% | 3 | 2.0 | 0.1 | 41.8 | | | 12108.63 | 50% | 70% | 4 | 1.0 | 0.0 | 54.3 | | | 25535.993 | 25% | 81% | | | | | | | 70809.57 | 25% | 91% | | | | | | | Cutoff | | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|--------------|--| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | 95% CI of OR | | | 0 hours | 7647.3802 | 75% | 69% | 1 | | | | | | | 2026.199 | 88% | 40% | 2 | na | na | na | | | | 1859.8427 | 100% | 35% | 3 | na | na | na | | | | 8042.5801 | 63% | 71% | 4 | na | na | na | | | | 12774.377 | 50% | 81% | | | | | | | | 46014.881 | 38% | 90% | | | | | | | 24 hours | 7647.3802 | 75% | 69% | 1 | | | | | | | 2026.199 | 88% | 40% | 2 | na | na | na | | | | 1859.8427 | 100% | 35% | 3 | na | na | na | | | | 8042.5801 | 63% | 71% | 4 | na | na | na | | | | 12774.377 | 50% | 81% | | | | | | | | 46014.881 | 38% | 90% | | | | | | | 48 hours | 7647.3802 | 83% | 69% | 1 | | | | | | | 7647.3802 | 83% | 69% | 2 | 0.0 | 0.0 | na | | | | 307.74357 | 100% | 6% | 3 | 1.0 | 0.0 | 60.7 | | | | 8042.5801 | 67% | 71% | 4 | 4.4 | 0.3 | 62.4 | | | | 12774.377 | 67% | 81% | | | | | | | | 46014.881 | 50% | 90% | | | | | | ### FIGURE 5 ### Clusterin sCr or UO | | 0 hr prior to A | KI stage | 24 hr prior to | ΛKI stage | 48 hr prior to ΛKI stage | | | |------------|-----------------|------------|----------------|------------|--------------------------|------------|--| | | Cohort I | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 105471.555 | 102144.952 | 105471.555 | 91734.716 | 105471.555 | 102457.166 | | | average | 103548.936 | 103840.742 | 103548.936 | 96143.377 | 103548.936 | 91184.420 | | | stdev | 32624.306 | 41323.685 | 32624.306 | 41761.748 | 32624.306 | 28741.302 | | | p (t-test) | | 0.962 | | 0.218 | | 0.084 | | | min | 25053.295 | 31439.276 | 25053.295 | 22142.935 | 25053.295 | 29219.208 | | | max | 190261.364 | 244623.417 | 190261.364 | 227787.431 | 190261.364 | 120000.000 | | | n (Samp) | 105 | 48 | 105 | 55 | 105 | 25 | | | n (Pat) | 99 | 48 | 99 | 55 | 99 | 25 | | sCr only | | 0 hr prior toA | KI stage | 24 hr prior toAKI stage | | 48 hr prior toAKI stage | | |------------|----------------|------------|-------------------------|------------|-------------------------|------------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 97216.331 | 120000.000 | 97216.331 | 116067.381 | 97216.331 | 110644.560 | | average | 96957.849 | 112773.425 | 96957.849 | 114732.527 | 96957.849 | 96615.398 | | stdev | 35978.921 | 43172.705 | 35978.921 | 50750.963 | 35978.921 | 28342.475 | | p (t-test) | | 0.094 | | 0.041 | | 0.974 | | min | 369.562 | 53297.264 | 369.562 | 22142.935 | 369.562 | 49149.536 | | max | 244623.417 | 201365.565 | 244623.417 | 227787.431 | 244623.417 | 120000.000 | | n (Samp) | 242 | 16 | 242 | 20 | 242 | 12 | | n (Pat) | 161 | 16 | 161 | 20 | 161 | 12 | UO only | 0 0 0111) | | | | | | | | |------------|------------------------|------------|----------------|------------|-------------------------|------------|--| | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 101952.773 | 95932.951 | 101952.773 | 88962.457 | 101952.773 | 97090.578 | | | average | 102438.494 | 99158.898 | 102438.494 | 89026.491 | 102438.494 | 86412.967 | | | stdev | 34600.331 | 38738.041 | 34600.331 | 31350.984 | 34600.331 | 29538.579 | | | p (t-test) | | 0.628 | | 0.030 | | 0.051 | | | min | 25053.295 | 31439.276 | 25053.295 | 22142.935 | 25053.295 | 29219.208 | | | max | 201365.565 | 244623.417 | 201365.565 | 155818.229 | 201365.565 | 120000.000 | | | n (Samp) | 96 | 40 | 96 | 44 | 96 | 21 | | | n (Pat) | 84 | 40 | 84 | 44 | 84 | 21 | | sCr or UO | Time prior | AUC | SE | nCohort 1 | nCohort 2 | P | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.50 | 0.050 | 105 | 48 | 0.984 | | 24 hours | 0.43 | 0.047 | 105 | 55 | 0.153 | | 48 hours | 0.41 | 0.061 | 105 | 25 | 0.135 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.61 | 0.077 | 242 | 16 | 0.148 | | 24 hours | 0.61 | 0.069 | 242 | 20 | 0.118 | | 48 hours | 0.52 | 0.086 | 242 | 12 | 0.844 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.48 | 0.054 | 96 | 40 | 0.740 | | 24 hours | 0.41 | 0.050 | 96 | 44 | 0.062 | | 48 hours | 0.39 | 0.064 | 96 | 21 | 0.074 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% (
OR | CI of | |----------------------|-----------------|------|------|----------|-----|-------------|-------| | 0 hours | 79084.922 | 71% | 28% | 1 | | | | | | 63492.875 | 81% | 9% | 2 | 0.8 | 0.5 | 1.3 | | | 53297.264 | 92% | 4% | 3 | 0.9 | 0.6 | 1.5 | | | 120000 | 27% | 80% | 4 | 0.9 | 0.6 | 1.5 | | | 120000 | 27% | 80% | | | | | | | 149406.14 | 8% | 90% | | | | | | 24 hours | 78565.883 | 71% | 27% | 1 1 | I | I | | |----------|-----------|-----|-----|-----|-----|-----|-----| | | 56870.171 | 80% | 6% | 2 | 0.5 | 0.3 | 0.9 | | | 46178.387 | 91% | 3% | 3 | 1.4 | 0.9 | 2.1 | | | 120000 | 15% | 80% | 4 | 1.1 | 0.7 | 1.7 | | | 120000 | 15% | 80% | | | | | | | 149406.14 | 7% | 90% | | | | | | 48 hours | 68407.421 | 72% | 14% | 1 | | | | | | 61419.254 | 80% | 9% | 2 | 3.3 | 1.2 | 9.5 | | | 50234.038 | 92% | 4% | 3 | 2.2 | 0.7 | 6.8 | | | 120000 | 0% | 80% | 4 | 3.3 | 1.2 | 9.5 | | | 120000 | 0% | 80% | | · | | | | | 149406.14 | 0% | 90% | | | | | sCr only | of Only | | | | | | | | |----------------------|-----------|------|------|----------|-----|-----|-------| | | Cutoff | | | | | 95% | CI of | | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 85005.727 | 75% | 39% | 1 | | | | | | 78071.147 | 81% | 31% | 2 | 1.3 | 0.4 | 4.5 | | | 56870.171 | 94% | 13% | 3 | 0.3 | 0.0 | 4.7 | | | 119702.71 | 56% | 70% | 4 | 2.9 | 1.1 | 7.5 | | | 120000 | 38% | 83% | | | | | | | 138096.84 | 25% | 90% | | | | | | 24 hours | 90505.879 | 70% | 44% | 1 | | | | | | 78628.309 | 80% | 32% | 2 | 1.7 | 0.6 | 5.1 | | | 61244.828 | 90% | 16% | 3 | 1.4 | 0.4 | 4.5 | | | 119702.71 | 50% | 70% | 4 | 2.9 | 1.1 | 7.5 | | | 120000 | 30% | 83% | | | | | | | 138096.84 | 25% | 90% | | | | | | 48 hours | 66314.972 | 75% | 20% | 1 | | | | | | 62815.705 | 83% | 17% | 2 | 0.0 | 0.0 | na | | | 60213.292 | 92% | 15% | 3 | 2.1 | 1.0 | 4.8 | | | 119702.71 | 42% | 70% | 4 | 0.0 | 0.0 | na | | | 120000 | 0% | 83% | | | | | | | 138096.84 | 0% | 90% | | | | | | | Cutoff | | | | | 95% | CI of | |----------------------|-----------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 79009.201 | 70% | 30% | 1 | | | | | | 63492.875 | 80% | 11% | 2 | 0.5 | 0.3 | 0.9 | | | 54290.639 | 90% | 6% | 3 | 0.7 | 0.4 | 1.1 | | | 120000 | 25% | 81% | 4 | 1.0 | 0.6 | 1.7 | |
| 120000 | 25% | 81% | | | | | | | 154350.07 | 3% | 91% | | | | | | 24 hours | 78282.6 | 70% | 28% | 1 | | | | | | 56025.435 | 82% | 7% | 2 | 1.2 | 0.6 | 2.2 | | | 46178.387 | 91% | 3% | 3 | 2.5 | 1.5 | 4.4 | | | 120000 | 9% | 81% | 4 | 1.8 | 1.0 | 3.1 | | | 120000 | 9% | 81% | | | | | | | 154350.07 | 2% | 91% | | | | | | 48 hours | 61419.254 | 71% | 11% | 1 | | | | | | 56870.171 | 81% | 8% | 2 | 2.9 | 1.0 | 8.6 | | | 53297.264 | 90% | 6% | 3 | 1.0 | 0.2 | 4.4 | | | 120000 | 0% | 81% | 4 | 3.4 | 1.2 | 9.9 | | | 120000 | 0% | 81% | | | | | | | 154350.07 | 0% | 91% | | | | | Fatty acid binding protein, heart | cCe | ~ | Т | TO | |------|------------|-----|----| | S(T | α r | - 1 | 16 | | act of oc | | | | | | | |------------|-----------------|----------|----------------|-----------|--------------------------|----------| | | 0 hr prior to A | KI stage | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 6.830 | 12.500 | 6.830 | 13.200 | 6.830 | 15.250 | | average | 25.474 | 46.679 | 25.474 | 83.953 | 25.474 | 37.778 | | stdev | 70.615 | 93.933 | 70.615 | 223.292 | 70.615 | 54.745 | | p (t-test) | | 0.057 | | 0.000 | | 0.389 | | min | 0.030 | 0.030 | 0.030 | 0.030 | 0.030 | 0.030 | | max | 713.000 | 623.000 | 713.000 | 1477.000 | 713.000 | 208.000 | | n (Samp) | 257 | 56 | 257 | 61 | 257 | 26 | | n (Pat) | 112 | 56 | 112 | 61 | 112 | 26 | sCr only | , | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|----------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 8.660 | 17.900 | 8.660 | 29.950 | 8.660 | 16.250 | | average | 39.723 | 144.530 | 39.723 | 149.598 | 39.723 | 42.209 | | stdev | 109.437 | 295.256 | 109.437 | 323.693 | 109.437 | 48.671 | | p (t-test) | | 0.000 | | 0.000 | | 0.933 | | min | 0.030 | 0.030 | 0.030 | 0.030 | 0.030 | 0.293 | | max | 944.000 | 1260.000 | 944.000 | 1477.000 | 944.000 | 140.000 | | n (Samp) | 459 | 23 | 459 | 26 | 459 | 14 | | n (Pat) | 180 | 23 | 180 | 26 | 180 | 14 | UO only | , | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|----------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 7.850 | 13.000 | 7.850 | 13.200 | 7.850 | 18.900 | | average | 25.943 | 46.542 | 25.943 | 61.579 | 25.943 | 52.266 | | stdev | 63.034 | 96.379 | 63.034 | 136.551 | 63.034 | 79.748 | | p (t-test) | | 0.062 | | 0.005 | | 0.065 | | min | 0.030 | 0.030 | 0.030 | 0.030 | 0.030 | 0.030 | | max | 713.000 | 623.000 | 713.000 | 944.000 | 713.000 | 324.000 | | n (Samp) | 213 | 51 | 213 | 53 | 213 | 23 | | n (Pat) | 89 | 51 | 89 | 53 | 89 | 23 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.61 | 0.043 | 257 | 56 | 0.010 | | 24 hours | 0.65 | 0.041 | 257 | 61 | 0.000 | | 48 hours | 0.61 | 0.061 | 257 | 26 | 0.086 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.66 | 0.063 | 459 | 23 | 0.012 | | 24 hours | 0.67 | 0.060 | 459 | 26 | 0.005 | | 48 hours | 0.61 | 0.081 | 459 | 14 | 0.176 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.62 | 0.046 | 213 | 51 | 0.007 | | 24 hours | 0.65 | 0.044 | 213 | 53 | 0.001 | | 48 hours | 0.64 | 0.065 | 213 | 23 | 0.028 | | | Cutoff | | | | | 95% | CI of | |----------------------|--------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 5.55 | 71% | 45% | 1 | | | | | | 3.52 | 80% | 34% | 2 | 1.0 | 0.6 | 1.6 | | | 1.04 | 91% | 12% | 3 | 1.5 | 1.0 | 2.2 | | | 13.6 | 43% | 70% | 4 | 2.6 | 1.9 | 3.7 | | | 26.3 | 32% | 80% | | | | | | | 58.6 | 23% | 90% | | | | | |----------|-------|-----|-----|---|-----|-----|-----| | 24 hours | 7.96 | 70% | 53% | 1 | | | | | | 5.44 | 80% | 44% | 2 | 1.7 | 1.1 | 2.7 | | | 1.83 | 90% | 21% | 3 | 1.9 | 1.2 | 3.0 | | | 13.6 | 48% | 70% | 4 | 4.3 | 2.9 | 6.3 | | | 26.3 | 43% | 80% | | | | | | | 58.6 | 26% | 90% | | | | | | 48 hours | 5.88 | 73% | 46% | 1 | | | | | | 3.66 | 81% | 35% | 2 | 1.0 | 0.4 | 2.3 | | | 0.429 | 92% | 5% | 3 | 1.2 | 0.6 | 2.6 | | | 13.6 | 54% | 70% | 4 | 2.1 | 1.1 | 4.1 | | | 26.3 | 31% | 80% | | | | | | | 58.6 | 19% | 90% | | | | | sCr only U.S. Patent | | Cutoff | | | | | 95% | CI of | |----------------------|--------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 7.45 | 74% | 46% | 1 | | | | | | 6.63 | 83% | 42% | 2 | 3.1 | 0.8 | 11.8 | | | 3.42 | 91% | 28% | 3 | 2.0 | 0.5 | 9.1 | | | 19.7 | 48% | 70% | 4 | 5.9 | 1.8 | 19.4 | | | 36.1 | 43% | 80% | | | | | | | 87.8 | 30% | 90% | | | | | | 24 hours | 8.92 | 73% | 51% | 1 | | | | | | 7.51 | 81% | 46% | 2 | 1.3 | 0.4 | 4.4 | | | 1.66 | 92% | 16% | 3 | 2.1 | 0.7 | 5.7 | | | 19.7 | 58% | 70% | 4 | 4.7 | 2.0 | 10.9 | | | 36.1 | 42% | 80% | | | | | | | 87.8 | 27% | 90% | | | | | | 48 hours | 6.31 | 71% | 41% | 1 | | | | | | 5.07 | 86% | 35% | 2 | 1.5 | 0.3 | 8.0 | | | 0.429 | 93% | 5% | 3 | 1.5 | 0.3 | 8.0 | | | 19.7 | 43% | 70% | 4 | 3.1 | 0.8 | 11.8 | | | 36.1 | 43% | 80% | | | | | | | 87.8 | 21% | 90% | | | | | | | Cutoff | | | | | 95% | CI of | |----------------------|--------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 6.19 | 71% | 46% | 1 | | | | | | 4.08 | 80% | 36% | 2 | 1.7 | 1.0 | 2.9 | | | 1.93 | 90% | 23% | 3 | 2.5 | 1.5 | 4.0 | | | 15 | 47% | 70% | 4 | 3.2 | 2.0 | 5.0 | | | 30.8 | 29% | 80% | | | | | | | 67.1 | 20% | 90% | | | | | | 24 hours | 7.19 | 72% | 49% | 1 | | | | | | 5.44 | 81% | 44% | 2 | 3.5 | 1.9 | 6.4 | | | 2.97 | 91% | 31% | 3 | 2.4 | 1.3 | 4.6 | | | 15 | 47% | 70% | 4 | 6.0 | 3.4 | 10.4 | | | 30.8 | 42% | 80% | | | | | | | 67.1 | 26% | 90% | | | | | | 48 hours | 5.88 | 74% | 45% | 1 | | | | | | 3.66 | 83% | 34% | 2 | 1.7 | 0.6 | 5.3 | | | 1.52 | 91% | 20% | 3 | 2.1 | 0.7 | 6.1 | | | 15 | 57% | 70% | 4 | 3.4 | 1.3 | 8.6 | | | 30.8 | 39% | 80% | | | | | | | 67.1 | 22% | 90% | | | | | ### Hepatocyte growth factor sCr or UO | | 0 hr prior to A | KI stage | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | | |------------|-----------------|-----------|----------------|-----------|--------------------------|-----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 633.080 | 777.891 | 633.080 | 1043.203 | 633.080 | 982.405 | | | average | 1537.665 | 1916.231 | 1537.665 | 1856.655 | 1537.665 | 2517.712 | | | stdev | 1801.833 | 2773.891 | 1801.833 | 2160.458 | 1801.833 | 4008.988 | | | p (t-test) | | 0.314 | | 0.323 | | 0.066 | | | min | 51.808 | 142.681 | 51.808 | 132.334 | 51.808 | 180.668 | | | max | 7752.950 | 15931.424 | 7752.950 | 11707.161 | 7752.950 | 14423.806 | | | n (Samp) | 105 | 48 | 105 | 55 | 105 | 25 | | | n (Pat) | 99 | 48 | 99 | 55 | 99 | 25 | | sCr only | - | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|----------------|-----------|----------------|-----------|-------------------------|-----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 837.929 | 810.686 | 837.929 | 1257.747 | 837.929 | 1182.948 | | | average | 1761.680 | 2116.616 | 1761.680 | 2492.148 | 1761.680 | 2514.827 | | | stdev | 2472.544 | 3776.134 | 2472.544 | 3145.736 | 2472.544 | 3955.216 | | | p (t-test) | | 0.593 | | 0.215 | | 0.320 | | | min | 51.808 | 142.681 | 51.808 | 209.588 | 51.808 | 184.185 | | | max | 25326.471 | 15931.424 | 25326.471 | 11707.161 | 25326.471 | 14423.806 | | | n (Samp) | 242 | 16 | 242 | 20 | 242 | 12 | | | n (Pat) | 161 | 16 | 161 | 20 | 161 | 12 | | UO only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|----------------|-----------|----------------|-----------|-------------------------|-----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 628.920 | 930.828 | 628.920 | 1115.761 | 628.920 | 982.405 | | | average | 2015.721 | 3046.173 | 2015.721 | 1636.249 | 2015.721 | 2226.069 | | | stdev | 3211.472 | 8296.541 | 3211.472 | 1590.315 | 3211.472 | 3394.072 | | | p (t-test) | | 0.297 | | 0.459 | | 0.788 | | | min | 51.808 | 184.185 | 51.808 | 132.334 | 51.808 | 180.668 | | | max | 17531.948 | 52712.475 | 17531.948 | 6754.272 | 17531.948 | 12135.776 | | | n (Samp) | 96 | 40 | 96 | 44 | 96 | 21 | | | n (Pat) | 84 | 40 | 84 | 44 | 84 | 21 | | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.56 | 0.051 | 105 | 48 | 0.242 | | 24 hours | 0.59 | 0.048 | 105 | 55 | 0.062 | | 48 hours | 0.55 | 0.065 | 105 | 25 | 0.417 | sCr only | Time prior | AUC: | SE | nCohort 1 | nCohort 2 | P | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.54 | 0.076 | 242 | 16 | 0.620 | | 24 hours | 0.59 | 0.069 | 242 | 20 | 0.174 | | 48 hours | 0.57 | 0.088 | 242 | 12 | 0.423 | UO only | Time prior
AKI stage | ΛUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.56 | 0.055 | 96 | 40 | 0.310 | | 24 hours | 0.57 | 0.053 | 96 | 44 | 0.210 | | 48 hours | 0.53 | 0.071 | 96 | 21 | 0.633 | | | Cutoff | | | | | 95% CI of | | |----------------------|-----------|------|------|----------|-----
-----------|-----| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 548.24211 | 71% | 42% | 1 | | | | | | 449.35994 | 81% | 33% | 2 | 2.9 | 1.7 | 5.1 | | | 270.54522 | 92% | 17% | 3 | 2.3 | 1.3 | 4.1 | | | 1450.5401 | 31% | 70% | 4 | 2.2 | 1.3 | 3.9 | | | 2393.3103 | 19% | 80% | | | | | | | 4662.0537 | 13% | 90% | | | | | | 24 hours | 615.05921 | 71% | 48% | 1 | I | I | | |----------|-----------|-----|-----|---|-----|-----|-----| | | 462.27088 | 80% | 34% | 2 | 1.5 | 0.9 | 2.5 | | | 331.38504 | 91% | 22% | 3 | 3.4 | 2.1 | 5.5 | | | 1450.5401 | 36% | 70% | 4 | 1.9 | 1.1 | 3.0 | | | 2393.3103 | 20% | 80% | | | | | | | 4662.0537 | 11% | 90% | | | | | | 48 hours | 419.42929 | 72% | 29% | 1 | | | | | | 411.80033 | 80% | 29% | 2 | 1.6 | 0.6 | 4.1 | | | 258.71872 | 92% | 16% | 3 | 2.7 | 1.2 | 6.5 | | | 1450.5401 | 36% | 70% | 4 | 1.6 | 0.6 | 4.1 | | | 2393.3103 | 24% | 80% | | | | | | | 4662.0537 | 16% | 90% | | | | | sCr only | let only | Cutoff | | | | | 95% | CLof | |----------------------|-----------|------|------|----------|-----|-----|-------| | TT: | | | | | op. | 1 ' | CI 01 | | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 593.51109 | 75% | 39% | 1 | | | | | | 576.16729 | 81% | 37% | 2 | 3.2 | 0.8 | 12.4 | | | 258.71872 | 94% | 11% | 3 | 1.0 | 0.1 | 7.6 | | | 1651.3048 | 38% | 70% | 4 | 3.2 | 0.8 | 12.4 | | | 2526.8808 | 6% | 80% | | | | | | | 4719.486 | 6% | 90% | | | | | | 24 hours | 662.69965 | 70% | 44% | 1 | | | | | | 607.42531 | 80% | 40% | 2 | 3.7 | 1.0 | 14.1 | | | 450.46649 | 90% | 27% | 3 | 2.6 | 0.6 | 11.0 | | | 1651.3048 | 40% | 70% | 4 | 3.2 | 0.8 | 12.4 | | | 2526.8808 | 25% | 80% | | | | | | | 4719.486 | 15% | 90% | | | | | | 48 hours | 895.36951 | 75% | 52% | 1 | | | | | | 540.29622 | 83% | 35% | 2 | 0.5 | 0.0 | 9.8 | | | 258.71872 | 92% | 11% | 3 | 3.2 | 0.8 | 12.7 | | | 1651.3048 | 25% | 70% | 4 | 1.5 | 0.3 | 8.2 | | | 2526.8808 | 25% | 80% | | | | | | | 4719.486 | 17% | 90% | | | | | | | Cutoff | | | | | 95% | CI of | |----------------------|-----------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 523.58816 | 70% | 41% | 1 | | | | | | 449.35994 | 80% | 30% | 2 | 2.5 | 1.3 | 4.9 | | | 298.34033 | 90% | 18% | 3 | 2.9 | 1.5 | 5.5 | | | 1863.8946 | 30% | 71% | 4 | 1.7 | 0.8 | 3.4 | | | 3401.6543 | 23% | 80% | | | | | | | 4731.8509 | 15% | 91% | | | | | | 24 hours | 624.8267 | 70% | 50% | 1 | | | | | | 411.80033 | 82% | 28% | 2 | 0.8 | 0.4 | 1.6 | | | 298.34033 | 91% | 18% | 3 | 4.0 | 2.3 | 6.9 | | | 1863.8946 | 30% | 71% | 4 | 1.4 | 0.7 | 2.4 | | | 3401.6543 | 14% | 80% | | | | | | | 4731.8509 | 7% | 91% | | | | | | 48 hours | 419.42929 | 71% | 28% | 1 | | | | | | 411.80033 | 81% | 28% | 2 | 2.3 | 0.7 | 7.1 | | | 270.54522 | 90% | 17% | 3 | 2.8 | 0.9 | 8.3 | | | 1863.8946 | 29% | 71% | 4 | 1.7 | 0.5 | 5.7 | | | 3401.6543 | 14% | 80% | | | | | | | 4731.8509 | 14% | 91% | | | | | ## Interferon gamma | sCr. | or | T | IC | |------|----|---|----| | | 0 hr prior to A | AKI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|-----------------|-----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 3.710 | 2.570 | 3.710 | 4.270 | 3.710 | 7.050 | | average | 8.075 | 5.871 | 8.075 | 8.311 | 8.075 | 10.774 | | stdev | 10.808 | 7.366 | 10.808 | 9.175 | 10.808 | 11.447 | | p (t-test) | | 0.147 | | 0.875 | | 0.229 | | min | 0.046 | 0.046 | 0.046 | 0.046 | 0.046 | 0.046 | | max | 80.000 | 27.200 | 80.000 | 32.200 | 80.000 | 40.400 | | n (Samp) | 257 | 56 | 257 | 61 | 257 | 26 | | n (Pat) | 112 | 56 | 112 | 61 | 112 | 26 | sCr only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 3.620 | 4.680 | 3.620 | 5.715 | 3.620 | 7.050 | | average | 8.202 | 6.150 | 8.202 | 8.860 | 8.202 | 10.416 | | stdev | 10.578 | 6.804 | 10.578 | 8.119 | 10.578 | 12.065 | | p (t-test) | | 0.358 | | 0.755 | | 0.443 | | min | 0.046 | 0.046 | 0.046 | 0.046 | 0.046 | 0.046 | | max | 80.000 | 25.300 | 80.000 | 29.900 | 80.000 | 40.400 | | n (Samp) | 459 | 23 | 459 | 26 | 459 | 14 | | n (Pat) | 180 | 23 | 180 | 26 | 180 | 14 | UO only | , and the second | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |--|----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 4.100 | 2.950 | 4.100 | 3.160 | 4.100 | 6.180 | | average | 7.470 | 6.314 | 7.470 | 8.421 | 7.470 | 9.540 | | stdev | 9.253 | 7.666 | 9.253 | 9.063 | 9.253 | 10.138 | | p (t-test) | | 0.409 | | 0.502 | | 0.314 | | min | 0.046 | 0.046 | 0.046 | 0.046 | 0.046 | 0.046 | | max | 48.700 | 27.200 | 48.700 | 32.200 | 48.700 | 32.600 | | n (Samp) | 213 | 51 | 213 | 53 | 213 | 23 | | n (Pat) | 89 | 51 | 89 | 53 | 89 | 23 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.42 | 0.040 | 257 | 56 | 0.038 | | 24 hours | 0.51 | 0.041 | 257 | 61 | 0.781 | | 48 hours | 0.57 | 0.061 | 257 | 26 | 0.250 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.46 | 0.060 | 459 | 23 | 0.552 | | 24 hours | 0.59 | 0.060 | 459 | 26 | 0.152 | | 48 hours | 0.56 | 0.081 | 459 | 14 | 0.439 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.45 | 0.044 | 213 | 51 | 0.235 | | 24 hours | 0.52 | 0.045 | 213 | 53 | 0.656 | | 48 hours | 0.57 | 0.065 | 213 | 23 | 0.305 | | | Cutoff | | | | | 95% (| 95% CI of | | |----------------------|--------|------|------|----------|-----|-------|-----------|--| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | | 0 hours | 1.62 | 75% | 18% | 1 | | | | | | | 1.09 | 80% | 11% | 2 | 0.8 | 0.5 | 1.2 | | | | 0 | 100% | 0% | 3 | 1.0 | 0.7 | 1.5 | | | | 7.25 | 25% | 70% | 4 | 2.2 | 1.6 | 3.0 | | | | 12.4 | 16% | 80% | | · | | | | U.S. Patent | 1 | 22.5 | 5% | 90% | | | | | |----------|-------|-----|-----|---|-----|-----|-----| | 24 hours | 2.35 | 70% | 28% | 1 | | | | | | 1.62 | 80% | 18% | 2 | 0.8 | 0.6 | 1.2 | | | 0.917 | 92% | 11% | 3 | 0.7 | 0.5 | 1.0 | | | 7.25 | 36% | 70% | 4 | 1.2 | 0.9 | 1.6 | | | 12.4 | 23% | 80% | | | | | | | 22.5 | 13% | 90% | | | | | | 48 hours | 1.94 | 73% | 24% | 1 | | | | | | 1.7 | 81% | 21% | 2 | 0.2 | 0.1 | 0.8 | | | 1.09 | 92% | 11% | 3 | 0.7 | 0.4 | 1.3 | | | 7.25 | 50% | 70% | 4 | 1.3 | 0.8 | 2.1 | | | 12.4 | 31% | 80% | | Ü | | | | | 22.5 | 15% | 90% | | | | | sCr only | | Cutoff | | | | | 95% | 95% CI of | | |----------------------|--------|------|------|----------|-----|-----|-----------|--| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | | 0 hours | 1.49 | 74% | 19% | 1 | | | | | | | 0 | 100% | 0% | 2 | 2.1 | 1.0 | 4.5 | | | | 0 | 100% | 0% | 3 | 1.0 | 0.4 | 2.8 | | | | 8.78 | 26% | 70% | 4 | 1.8 | 0.8 | 4.0 | | | | 13.9 | 17% | 80% | | | | | | | | 24.2 | 4% | 90% | | | | | | | 24 hours | 3.67 | 73% | 51% | 1 | | | | | | | 1.79 | 81% | 28% | 2 | 0.6 | 0.2 | 1.7 | | | | 0.982 | 92% | 13% | 3 | 2.3 | 1.3 | 4.2 | | | | 8.78 | 38% | 70% | 4 | 1.4 | 0.7 | 2.9 | | | | 13.9 | 27% | 80% | | | | | | | | 24.2 | 8% | 90% | | | | | | | 48 hours | 2.95 | 71% | 41% | 1 | | | | | | | 0.982 | 86% | 13% | 2 | 0.7 | 0.1 | 3.5 | | | | 0 | 100% | 0% | 3 | 1.3 | 0.4 | 4.4 | | | | 8.78 | 43% | 70% | 4 | 1.7 | 0.6 | 4.9 | | | | 13.9 | 21% | 80% |
 | | | | | | 24.2 | 14% | 90% | | | | | | | | Cutoff | | | | | 95% | 95% CI of | | |----------------------|--------|------|------|----------|-----|-----|-----------|--| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | | 0 hours | 1.7 | 71% | 22% | 1 | | | | | | | 1.58 | 80% | 21% | 2 | 0.8 | 0.5 | 1.3 | | | | 0.917 | 90% | 13% | 3 | 1.3 | 0.9 | 2.0 | | | | 7.66 | 25% | 70% | 4 | 1.7 | 1.2 | 2.5 | | | | 11.7 | 18% | 80% | | | | | | | | 21.2 | 8% | 90% | | | | | | | 24 hours | 2.28 | 72% | 31% | 1 | | | | | | | 1.58 | 81% | 21% | 2 | 1.1 | 0.7 | 1.6 | | | | 0.951 | 91% | 14% | 3 | 0.5 | 0.3 | 0.8 | | | | 7.66 | 42% | 70% | 4 | 1.6 | 1.2 | 2.2 | | | | 11.7 | 28% | 80% | | | | | | | | 21.2 | 11% | 90% | | | | | | | 48 hours | 1.94 | 74% | 27% | 1 | | | | | | | 1.49 | 87% | 19% | 2 | 0.8 | 0.3 | 2.0 | | | | 1.07 | 91% | 14% | 3 | 1.5 | 0.7 | 3.1 | | | | 7.66 | 43% | 70% | 4 | 1.5 | 0.7 | 3.1 | | | | 11.7 | 26% | 80% | | | | | | | | 21.2 | 13% | 90% | | | | | | Oct. 18, 2016 ### Interleukin-16 sCr or UO | | 0 hr prior to A | AKI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|-----------------|-----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 466.000 | 480.500 | 466.000 | 538.000 | 466.000 | 428.000 | | average | 569.981 | 605.232 | 569.981 | 638.836 | 569.981 | 538.231 | | stdev | 732.345 | 443.554 | 732.345 | 394.017 | 732.345 | 331.617 | | p (t-test) | | 0.729 | | 0.478 | | 0.827 | | min | 161.000 | 165.000 | 161.000 | 217.000 | 161.000 | 231.000 | | max | 11500.000 | 3110.000 | 11500.000 | 2030.000 | 11500.000 | 1530.000 | | n (Samp) | 257 | 56 | 257 | 61 | 257 | 26 | | n (Pat) | 112 | 56 | 112 | 61 | 112 | 26 | sCr only | | 0 hr prior toA | 0 hr prior to AKI stage 24 hr prior to AKI stage 48 hr prior to AE | | | AKI stage | | |------------|----------------|--|-----------|----------|-----------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 464.000 | 549.000 | 464.000 | 598.500 | 464.000 | 529.000 | | average | 557.318 | 1378.087 | 557.318 | 710.115 | 557.318 | 658.143 | | stdev | 588.467 | 3381.637 | 588.467 | 399.424 | 588.467 | 321.392 | | p (t-test) | | 0.000 | | 0.192 | | 0.524 | | min | 153.000 | 165.000 | 153.000 | 302.000 | 153.000 | 310.000 | | max | 11500.000 | 16800.000 | 11500.000 | 1930.000 | 11500.000 | 1220.000 | | n (Samp) | 459 | 23 | 459 | 26 | 459 | 14 | | n (Pat) | 180 | 23 | 180 | 26 | 180 | 14 | UO only | 0.0011 | | | | | | | |------------|----------------|----------|----------------|-----------|----------------|-----------| | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | | | Cohort 1 | Cohort 2 | Cohort I | Cohort 2 | Cohort 1 | Cohort 2 | | median | 466.000 | 479.000 | 466.000 | 505.000 | 466.000 | 445.000 | | average | 536.075 | 602.039 | 536.075 | 607.245 | 536.075 | 535.696 | | stdev | 257.240 | 439.479 | 257.240 | 362.716 | 257.240 | 322.038 | | p (t-test) | | 0.161 | | 0.100 | | 0.995 | | min | 172.000 | 249.000 | 172.000 | 217.000 | 172.000 | 231.000 | | max | 1550.000 | 3110.000 | 1550.000 | 2030.000 | 1550.000 | 1530.000 | | n (Samp) | 213 | 51 | 213 | 53 | 213 | 23 | | n (Pat) | 89 | 51 | 89 | 53 | 89 | 23 | sCr or UO | Time prior | AUC | SE | nCohort 1 | nCohort 2 | р | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.53 | 0.043 | 257 | 56 | 0.446 | | 24 hours | 0.56 | 0.042 | 257 | 61 | 0.143 | | 48 hours | 0.47 | 0.058 | 257 | 26 | 0.561 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.63 | 0.064 | 459 | 23 | 0.035 | | 24 hours | 0.65 | 0.060 | 459 | 26 | 0.013 | | 48 hours | 0.62 | 0.081 | 459 | 14 | 0.149 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.53 | 0.046 | 213 | 51 | 0.465 | | 24 hours | 0.53 | 0.045 | 213 | 53 | 0.469 | | 48 hours | 0.47 | 0.062 | 213 | 23 | 0.623 | | | Cutoff | | | | | 95% (| CI of | |----------------------|--------|------|------|----------|-----|-------|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 375 | 71% | 29% | 1 | | | | | | 345 | 80% | 23% | 2 | 1.1 | 0.8 | 1.6 | | | 295 | 91% | 15% | 3 | 0.8 | 0.6 | 1.2 | | | 592 | 36% | 70% | 4 | 1.5 | 1.1 | 2.0 | | | 666 | 29% | 80% | | | | | | | 914 | 14% | 90% | | | | | | 24 hours | 383 | 70% | 32% | 1 | I | l | l I | |----------|-----|-----|-----|---|-----|-----|-----| | | 334 | 80% | 20% | 2 | 0.7 | 0.5 | 1.0 | | | 288 | 90% | 14% | 3 | 1.2 | 0.9 | 1.6 | | | 592 | 38% | 70% | 4 | 1.2 | 0.9 | 1.7 | | | 666 | 30% | 80% | | | | | | | 914 | 21% | 90% | | | | | | 48 hours | 364 | 73% | 26% | 1 | | | | | | 332 | 81% | 20% | 2 | 1.4 | 0.7 | 3.0 | | | 306 | 92% | 16% | 3 | 1.4 | 0.7 | 3.0 | | | 592 | 23% | 70% | 4 | 1.5 | 0.7 | 3.1 | | | 666 | 15% | 80% | | | | | | | 914 | 12% | 90% | | | | | sCr only | C Olly | Cutoff | I | 1 | 1 | | 95% | CLof | |-------------------------|--------|------|------|----------|-----|-----|------| | Trime and an AIZI stars | | | l | 0 | OD | 1 | CIOI | | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 433 | 74% | 43% | 1 | | | | | | 377 | 83% | 30% | 2 | 3.6 | 1.0 | 13.2 | | | 361 | 91% | 26% | 3 | 2.0 | 0.5 | 9.1 | | | 585 | 43% | 70% | 4 | 5.3 | 1.6 | 17.8 | | | 671 | 39% | 80% | | | | | | | 914 | 30% | 90% | | | | | | 24 hours | 512 | 73% | 59% | 1 | | | | | | 361 | 81% | 26% | 2 | 0.7 | 0.2 | 2.4 | | | 329 | 92% | 19% | 3 | 1.8 | 0.8 | 4.0 | | | 585 | 54% | 70% | 4 | 3.2 | 1.6 | 6.3 | | | 671 | 38% | 80% | | | | | | | 914 | 27% | 90% | | | | | | 48 hours | 410 | 71% | 39% | 1 | | | | | | 371 | 86% | 29% | 2 | 4.1 | 0.3 | 49.2 | | | 364 | 93% | 27% | 3 | 4.1 | 0.3 | 49.2 | | | 585 | 43% | 70% | 4 | 5.1 | 0.5 | 55.8 | | | 671 | 36% | 80% | l | | | | | | 914 | 29% | 90% | | | | | | | Cutoff | | | | | 95% CI of
OR | | |----------------------|--------|------|------|----------|-----|-----------------|-----| | Time prior AKI stage | value | sens | spec | Quartile | OR | | | | 0 hours | 414 | 71% | 40% | 1 | | | | | | 345 | 80% | 21% | 2 | 1.1 | 0.7 | 1.6 | | | 299 | 90% | 15% | 3 | 0.9 | 0.6 | 1.4 | | | 613 | 33% | 70% | 4 | 1.3 | 0.9 | 1.9 | | | 683 | 27% | 80% | | | | | | | 915 | 12% | 90% | | | | | | 24 hours | 375 | 72% | 27% | 1 | | | | | | 332 | 81% | 18% | 2 | 0.7 | 0.4 | 1.0 | | | 272 | 91% | 11% | 3 | 1.1 | 0.8 | 1.5 | | | 613 | 30% | 70% | 4 | 1.0 | 0.7 | 1.4 | | | 683 | 26% | 80% | | | | | | | 915 | 19% | 90% | | | | | | 48 hours | 336 | 74% | 19% | 1 | | | | | | 311 | 83% | 16% | 2 | 0.8 | 0.4 | 1.8 | | | 292 | 91% | 15% | 3 | 0.8 | 0.4 | 1.8 | | | 613 | 26% | 70% | 4 | 1.2 | 0.6 | 2.4 | | | 683 | 17% | 80% | | | | | | | 915 | 9% | 90% | | | | | Oct. 18, 2016 ## Interleukin-2 sCr or UO | | 0 hr prior to A | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|-----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 0.502 | 0.585 | 0.502 | 0.594 | 0.502 | 0.586 | | average | 0.735 | 0.771 | 0.735 | 1.057 | 0.735 | 0.751 | | stdev | 0.952 | 0.600 | 0.952 | 1.385 | 0.952 | 0.561 | | p (t-test) | | 0.810 | | 0.086 | | 0.938 | | min | 0.000 | 0.021 | 0.000 | 0.157 | 0.000 | 0.138 | | max | 7.239 | 2.839 | 7.239 | 8.727 | 7.239 | 2.654 | | n (Samp) | 105 | 48 | 105 | 55 | 105 | 25 | | n (Pat) | 99 | 48 | 99 | 55 | 99 | 25 | sCr only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|----------------|----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 0.533 | 0.575 | 0.533 | 0.712 | 0.533 | 0.649 | | | average | 0.887 | 0.631 | 0.887 | 0.860 | 0.887 | 0.610 | | | stdev | 1.535 | 0.488 | 1.535 | 0.593 | 1.535 | 0.342 | | | p (t-test) | | 0.508 | | 0.938 | | 0.533 | | | min | 0.000 | 0.021 | 0.000 | 0.237 | 0.000 | 0.138 | | | max | 19.127 | 2.173 | 19.127 | 2.538 | 19.127 | 1.164 | | | n (Samp) | 242 | 16 | 242 | 20 | 242 | 12 | | | n (Pat) | 161 | 16 | 161 | 20 | 161 | 12 | | UO only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|----------------|----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 0.542 | 0.586 | 0.542 | 0.586 | 0.542 | 0.586 | | | average | 0.824 | 0.781 | 0.824 | 1.128 | 0.824 | 0.879 | | | stdev | 1.008 | 0.590 | 1.008 | 1.526 | 1.008 | 0.675 | | | p (t-test) | | 0.800 | | 0.164 | | 0.812 | | | min | 0.045 | 0.143 | 0.045 | 0.157 | 0.045 | 0.210 | | | max | 7.239 | 2.839 | 7.239 | 8.727 | 7.239 | 2.654 | | | n (Samp) | 96 | 40 | 96 | 44 | 96 | 21 | | | n (Pat) | 84 | 40 | 84 | 44 | 84 | 21 | | sCr or UO | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.58 | 0.051 | 105 | 48 | 0.126 | | 24 hours | 0.61 | 0.048 | 105 | 55 | 0.024 | | 48 hours | 0.58 | 0.066 | 105 | 25 | 0.235 | sCr only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | р | |------------|------|-------|-----------|-----------|-------| | ΛKI stage | | | | | | | 0 hours | 0.50 | 0.075 | 242 | 16 | 0.966 | | 24 hours | 0.59 | 0.069 | 242 | 20 | 0.187 | | 48 hours | 0.51 | 0.086 | 242 | 12 | 0.946 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours |
0.54 | 0.055 | 96 | 40 | 0.417 | | 24 hours | 0.56 | 0.053 | 96 | 44 | 0.236 | | 48 hours | 0.57 | 0.071 | 96 | 21 | 0.318 | | | Cutoff | | | | | 95% | CI of | |----------------------|-----------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 0.441742 | 71% | 44% | 1 | | | | | | 0.3227725 | 81% | 28% | 2 | 1.3 | 0.8 | 2.2 | | | 0.2225612 | 92% | 16% | 3 | 1.5 | 0.9 | 2.5 | | | 0.6608587 | 40% | 70% | 4 | 2.2 | 1.4 | 3.7 | | | 0.8141932 | 29% | 80% | | | | | | | 1.4175697 | 17% | 90% | | | | | | 24 hours | 0.4058343 | I 71% | l 38% | I 1 | ı | 1 | | |----------|-----------|-------|-------|-----|-----|-----|-----| | 24 Hours | 0.4036343 | /170 | 36% | 1 | | | | | | 0.3397476 | 80% | 30% | 2 | 1.4 | 0.9 | 2.3 | | | 0.2727072 | 91% | 22% | 3 | 1.4 | 0.9 | 2.3 | | | 0.6608587 | 45% | 70% | 4 | 2.7 | 1.7 | 4.3 | | | 0.8141932 | 36% | 80% | | | | | | | 1.4175697 | 18% | 90% | | | | | | 48 hours | 0.441742 | 72% | 44% | 1 | | | | | | 0.4007328 | 80% | 37% | 2 | 1.2 | 0.5 | 2.8 | | | 0.1974446 | 92% | 12% | 3 | 1.0 | 0.4 | 2.5 | | | 0.6608587 | 44% | 70% | 4 | 2.0 | 0.9 | 4.3 | | | 0.8141932 | 36% | 80% | | | | | | | 1.4175697 | 8% | 90% | | | | | sCr only | | Cutoff | | | | | 95% | CI of | |----------------------|-----------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 0.3778117 | 75% | 33% | 1 | | | | | | 0.3600263 | 81% | 29% | 2 | 2.6 | 0.6 | 10.9 | | | 0.1258636 | 94% | 5% | 3 | 3.8 | 1.0 | 14.3 | | | 0.766354 | 19% | 70% | 4 | 1.0 | 0.1 | 7.4 | | | 1.0624848 | 13% | 80% | | | | | | | 1.8023893 | 6% | 90% | | | | | | 24 hours | 0.4673005 | 70% | 43% | 1 | | | | | | 0.3902944 | 80% | 34% | 2 | 1.0 | 0.3 | 2.8 | | | 0.2920348 | 90% | 21% | 3 | 0.7 | 0.2 | 2.5 | | | 0.766354 | 50% | 70% | 4 | 2.4 | 1.1 | 5.2 | | | 1.0624848 | 25% | 80% | | | | | | | 1.8023893 | 10% | 90% | | | | | | 48 hours | 0.2697168 | 75% | 17% | 1 | | | | | | 0.2487421 | 83% | 14% | 2 | 0.0 | 0.0 | na | | | 0.1572836 | 92% | 7% | 3 | 1.3 | 0.5 | 3.3 | | | 0.766354 | 42% | 70% | 4 | 0.7 | 0.2 | 2.4 | | | 1.0624848 | 8% | 80% | | | | | | | 1.8023893 | 0% | 90% | | | | | JO only | | Cutoff | | | | | 95% | CLof | |----------------------|-----------|------|------|----------|-----|-----|------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 0.4469507 | 70% | 42% | 1 | | | | | | 0.3397476 | 80% | 27% | 2 | 1.4 | 0.7 | 2.5 | | | 0.2894797 | 90% | 21% | 3 | 1.8 | 1.0 | 3.1 | | | 0.78861 | 33% | 71% | 4 | 1.4 | 0.7 | 2.5 | | | 0.9678962 | 25% | 80% | | | | | | | 1.5351742 | 15% | 91% | | | | | | 24 hours | 0.3872229 | 70% | 32% | 1 | | | | | | 0.3271002 | 82% | 25% | 2 | 1.3 | 0.8 | 2.3 | | | 0.2665305 | 91% | 16% | 3 | 1.2 | 0.7 | 2.0 | | | 0.78861 | 41% | 71% | 4 | 1.9 | 1.1 | 3.3 | | | 0.9678962 | 30% | 80% | | | | | | | 1.5351742 | 18% | 91% | | | | | | 48 hours | 0.4469507 | 71% | 42% | 1 | | | | | | 0.4209348 | 81% | 36% | 2 | 2.8 | 0.9 | 8.3 | | | 0.278692 | 90% | 17% | 3 | 1.4 | 0.4 | 5.1 | | | 0.78861 | 33% | 71% | 4 | 2.6 | 0.9 | 7.9 | | | 0.9678962 | 33% | 80% | | | | | | | 1.5351742 | 19% | 91% | | | | | Oct. 18, 2016 Interleukin-12 p40 sCr or UO | ber or e e | | | | | | | | |------------|-----------------|-----------|----------------|-----------|--------------------------|----------|--| | | 0 hr prior to A | AKI stage | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | | | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 33.113 | 26.461 | 33.113 | 20.388 | 33.113 | 26.282 | | | average | 44.441 | 28.178 | 44.441 | 33.913 | 44.441 | 34.108 | | | stdev | 45.103 | 19.402 | 45.103 | 35.548 | 45.103 | 33.576 | | | p (t-test) | | 0.018 | | 0.135 | | 0.284 | | | min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | max | 230.675 | 74.271 | 230.675 | 199.554 | 230.675 | 163.969 | | | n (Samp) | 105 | 48 | 105 | 55 | 105 | 25 | | | n (Pat) | 99 | 48 | 99 | 55 | 99 | 25 | | sCr only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 28.168 | 40.846 | 28.168 | 16.783 | 28.168 | 39.569 | | average | 35.854 | 42.961 | 35.854 | 31.632 | 35.854 | 44.630 | | stdev | 35.190 | 22.328 | 35.190 | 44.969 | 35.190 | 42.545 | | p (t-test) | | 0.426 | | 0.615 | | 0.405 | | min | 0.000 | 9.137 | 0.000 | 0.000 | 0.000 | 0.000 | | max | 230.675 | 89.352 | 230.675 | 199.554 | 230.675 | 163.969 | | n (Samp) | 242 | 16 | 242 | 20 | 242 | 12 | | n (Pat) | 161 | 16 | 161 | 20 | 161 | 12 | UO only | , , | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 32.732 | 20.996 | 32.732 | 27.081 | 32.732 | 26.282 | | | average | 41.130 | 25.635 | 41.130 | 38.284 | 41.130 | 35.752 | | | stdev | 40.396 | 19.095 | 40.396 | 37.534 | 40.396 | 35.676 | | | p (t-test) | | 0.022 | | 0.693 | | 0.574 | | | min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | max | 230.675 | 74.271 | 230.675 | 199.554 | 230.675 | 163.969 | | | n (Samp) | 96 | 40 | 96 | 44 | 96 | 21 | | | n (Pat) | 84 | 40 | 84 | 44 | 84 | 21 | | sCr or UO | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | ΛKI stage | | | | | | | 0 hours | 0.42 | 0.049 | 105 | 48 | 0.082 | | 24 hours | 0.42 | 0.047 | 105 | 55 | 0.076 | | 48 hours | 0.44 | 0.062 | 105 | 25 | 0.326 | sCr only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.64 | 0.077 | 242 | 16 | 0.066 | | 24 hours | 0.40 | 0.062 | 242 | 20 | 0.099 | | 48 hours | 0.59 | 0.088 | 242 | 12 | 0.289 | UO only | | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |---|-------------------------|------|-------|-----------|-----------|-------| | | 0 hours | 0.39 | 0.051 | 96 | 40 | 0.025 | | Г | 24 hours | 0.48 | 0.052 | 96 | 44 | 0.643 | | Г | 48 hours | 0.46 | 0.068 | 96 | 21 | 0.515 | | Г | | Cutoff | | | | | | | |---|-----------------------|-----------|------|------|----------|-----|-------|---------| | Ľ | l'ime prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | Г |) hours | 15.666709 | 71% | 24% | 1 | | | | | | | 9.4129279 | 81% | 14% | 2 | 1.0 | 0.6 | 1.8 | | | | 3.3229148 | 92% | 9% | 3 | 2.4 | 1.5 | 4.0 | | ı | | 43.818211 | 19% | 70% | 4 | 1.9 | 1.2 | 3.2 | | | | 64.573125 | 6% | 80% | | | | | | | | 103.64968 | 0% | 90% | | | | | | K | GURE 5 - CONTINUED | | | | | | | | |----|----------------------|-----------|------|------|----------|-----|-------|---------| | | 24 hours | 16.126739 | 71% | 25% | 1 1 | | 1 ! | 1 | | | | 11.758032 | 80% | 17% | 2 | 0.4 | 0.2 | 0.7 | | | | 1.2982033 | 91% | 8% | 3 | 1.7 | 1.1 | 2.5 | | | | 43.818211 | 27% | 70% | 4 | 1.1 | 0.7 | 1.7 | | | | 64.573125 | 15% | 80% | | | | | | | | 103.64968 | 7% | 90% | | | | | | | 48 hours | 18.199316 | 72% | 30% | 1 | | | | | | | 13.847063 | 80% | 22% | 2 | 0.8 | 0.3 | 2.2 | | | | 0 | 100% | 0% | 3 | 2.1 | 1.0 | 4.5 | | | | 43.818211 | 24% | 70% | 4 | 1.6 | 0.7 | 3.6 | | | | 64.573125 | 8% | 80% | | | 1 | | | | | 103.64968 | 4% | 90% | | | | | | s(| Or only | | | | | | | | | | | Cutoff | | | | | | | | | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | | 0 hours | 26.774518 | 75% | 48% | 1 | | | | | | | | | | | | | | | scromy | | | | | | | | |----------------------|-----------------|------|------|----------|-----|-------|---------| | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 26.774518 | 75% | 48% | 1 | | | | | | 24.36913 | 81% | 45% | 2 | 4.1 | 0.3 | 51.0 | | | 16.717185 | 94% | 29% | 3 | 6.5 | 0.6 | 68.4 | | | 39.823651 | 56% | 70% | 4 | 5.3 | 0.5 | 58.8 | | | 49.184951 | 31% | 80% | | | | | | | 74.125859 | 13% | 90% | | | | | | 24 hours | 9.6041633 | 70% | 17% | 1 | | | | | | 5.1253412 | 80% | 12% | 2 | 0.4 | 0.1 | 1.6 | | | 1.846505 | 90% | 9% | 3 | 0.8 | 0.3 | 2.0 | | | 39.823651 | 25% | 70% | 4 | 2.0 | 1.0 | 3.9 | | | 49.184951 | 25% | 80% | | | | | | | 74.125859 | 5% | 90% | | | | | | 48 hours | 22.206909 | 75% | 43% | 1 | | | | | | 21.27953 | 83% | 41% | 2 | 1.0 | 0.1 | 7.4 | | | 1.846505 | 92% | 9% | 3 | 2.1 | 0.4 | 9.6 | | | 39.823651 | 50% | 70% | 4 | 2.0 | 0.4 | 9.4 | | | 49.184951 | 33% | 80% | | | | | | | 74.125859 | 8% | 90% | | | | | | TD: A IZI | Cutoff | | | 0 17 | OD | 0.501.6 | T COD | |----------------------|-----------|------|------|----------|-----|---------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 15.286756 | 70% | 23% | 1 | | | | | | 9.4129279 | 80% | 18% | 2 | 1.2 | 0.6 | 2.3 | | | 3.3229148 | 90% | 8% | 3 | 2.4 | 1.3 | 4.3 | | | 43.818211 | 18% | 71% | 4 | 2.1 | 1.1 | 3.9 | | | 55.173538 | 8% | 80% | | | | | | | 89.565615 | 0% | 91% | | | | | | 24 hours | 17.960094 | 70% | 30% | 1 | | | | | | 15.666709 | 82% | 24% | 2 | 0.3 | 0.1 | 0.6 | | | 5.1253412 | 91% | 9% | 3 | 1.3 | 0.8 | 2.0 | | | 43.818211 | 32% | 71% | 4 | 0.8 | 0.5 | 1.3 | | | 55.173538 | 23% | 80% | | | | | | | 89.565615 | 9% | 91% | | | | | | 48 hours | 18.11806 | 71% | 31% | 1 | | | | | | 13.847063 | 81% | 22% | 2 | 0.8 | 0.3 | 2.3 | | | 8.1183826 | 90% | 13% | 3 | 13 | 0.5 | 3.2 | | | 43.818211 | 29% | 71% | 4 | 1.3 | 0.5 | 3.2 | | | 55.173538 | 14% | 80% | | | | | | | 89.565615 | 5% | 91% | | | | | #### Matrix metalloproteinase-2 | _ | | _ | | |------|----|---|----| | sC'r | or | I | IO | | | 0 hr prior to AKI stage | | 24 hr prior to | AKI stage | 48 hr prior to |
AKI stage | |------------|-------------------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 2410.000 | 2695.000 | 2410.000 | 2730.000 | 2410.000 | 2755.000 | | average | 2499.735 | 2820.714 | 2499.735 | 2717.230 | 2499.735 | 2848.077 | | stdev | 889.134 | 940.104 | 889.134 | 1056.121 | 889.134 | 863.806 | | p (t-test) | | 0.016 | | 0.099 | | 0.057 | | min | 618.000 | 1520.000 | 618.000 | 1190.000 | 618.000 | 1440.000 | | max | 5710.000 | 5520.000 | 5710.000 | 5621.000 | 5710.000 | 5080.000 | | n (Samp) | 257 | 56 | 257 | 61 | 257 | 26 | | n (Pat) | 112 | 56 | 112 | 61 | 112 | 26 | sCr only | • | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 2490.000 | 2590.000 | 2490.000 | 2610.000 | 2490.000 | 2920.000 | | | average | 2629.743 | 2796.957 | 2629.743 | 2822.346 | 2629.743 | 3013.571 | | | stdev | 974.304 | 1054.611 | 974.304 | 1302.561 | 974.304 | 1038.028 | | | p (t-test) | | 0.424 | | 0.337 | | 0.148 | | | min | 618.000 | 1720.000 | 618.000 | 1350.000 | 618.000 | 1690.000 | | | max | 6370.000 | 5130.000 | 6370.000 | 5621.000 | 6370.000 | 5030.000 | | | n (Samp) | 459 | 23 | 459 | 26 | 459 | 14 | | | n (Pat) | 180 | 23 | 180 | 26 | 180 | 14 | | UO only | | 0 hr prior toA | KI stage | 24 hr prior toAKI stage | | 48 hr prior to | AKI stage | |------------|----------------|----------|-------------------------|----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 2460.000 | 2870.000 | 2460.000 | 2820.000 | 2460.000 | 2850.000 | | average | 2510.056 | 2977.451 | 2510.056 | 2765.094 | 2510.056 | 2976.087 | | stdev | 893.199 | 994.601 | 893.199 | 944.296 | 893.199 | 879.048 | | p (t-test) | | 0.001 | | 0.067 | | 0.018 | | min | 618.000 | 1520.000 | 618.000 | 1190.000 | 618.000 | 1440.000 | | max | 5710.000 | 5870.000 | 5710.000 | 5270.000 | 5710.000 | 5080.000 | | n (Samp) | 213 | 51 | 213 | 53 | 213 | 23 | | n (Pat) | 89 | 51 | 89 | 53 | 89 | 23 | sCr or UO | | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |---|-------------------------|------|-------|-----------|-----------|-------| | | 0 hours | 0.60 | 0.043 | 257 | 56 | 0.028 | | | 24 hours | 0.55 | 0.042 | 257 | 61 | 0.226 | | [| 48 hours | 0.62 | 0.061 | 257 | 26 | 0.054 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.53 | 0.063 | 459 | 23 | 0.619 | | 24 hours | 0.52 | 0.059 | 459 | 26 | 0.790 | | 48 hours | 0.61 | 0.081 | 459 | 14 | 0.192 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.63 | 0.045 | 213 | 51 | 0.003 | | 24 hours | 0.58 | 0.045 | 213 | 53 | 0.087 | | 48 hours | 0.66 | 0.065 | 213 | 23 | 0.015 | | | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 2080 | 71% | 34% | 1 | | | | | | 1960 | 80% | 28% | 2 | 1.7 | 1.1 | 2.5 | | | 1740 | 93% | 21% | 3 | 1.4 | 0.9 | 2.2 | | | 2890 | 45% | 70% | 4 | 2.8 | 1.9 | 4.0 | | | 3150 | 32% | 80% | | | | | | | 3660 | 18% | 90% | | | | | | 24 hours | 1940 | 70% | 28% | 1 | | | | |----------|------|-----|-----|---|-----|-----|-----| | | 1760 | 80% | 21% | 2 | 0.6 | 0.4 | 0.9 | | | 1480 | 90% | 12% | 3 | 0.8 | 0.6 | 1.1 | | | 2890 | 43% | 70% | 4 | 1.4 | 1.1 | 1.9 | | | 3150 | 30% | 80% | | | | | | | 3660 | 15% | 90% | | | | | | 48 hours | 2370 | 73% | 49% | 1 | | | | | | 2210 | 81% | 42% | 2 | 2.1 | 0.7 | 5.8 | | | 1810 | 92% | 22% | 3 | 2.8 | 1.1 | 7.4 | | | 2890 | 38% | 70% | 4 | 3.2 | 1.3 | 8.2 | | | 3150 | 31% | 80% | | | | | | | 3660 | 12% | 90% | | | | | | SCI OHY | | | | | | | | |----------------------|-----------------|------|------|-----------|-----|--------|---------| | Time anion AVI stage | Cutoff
value | | | Outertile | OR | 0507.0 | I of OR | | Time prior AKI stage | | sens | spec | Quartile | UK | 93% C | TOLOR | | 0 hours | 1880 | 74% | 22% | 1 | | | | | | 1780 | 83% | 18% | 2 | 0.6 | 0.2 | 1.2 | | | 1740 | 91% | 17% | 3 | 0.6 | 0.2 | 1.2 | | | 2970 | 39% | 70% | 4 | 1.1 | 0.7 | 2.0 | | | 3320 | 26% | 80% | | | | | | | 3880 | 17% | 90% | | | | | | 24 hours | 1740 | 73% | 17% | 1 | | | | | | 1710 | 81% | 16% | 2 | 0.3 | 0.1 | 0.7 | | | 1370 | 92% | 7% | 3 | 0.2 | 0.1 | 0.6 | | | 2970 | 42% | 70% | 4 | 1.1 | 0.7 | 1.7 | | | 3320 | 31% | 80% | | | | | | | 3880 | 19% | 90% | | | | | | 48 hours | 2370 | 71% | 45% | 1 | | | | | | 1970 | 86% | 26% | 2 | 2.0 | 0.5 | 9.2 | | | 1810 | 93% | 19% | 3 | 1.0 | 0.1 | 7.3 | | | 2970 | 50% | 70% | 4 | 3.1 | 0.8 | 11.8 | | | 3320 | 43% | 80% | | | | | | | 3880 | 14% | 90% | | | | | | | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 2290 | 71% | 44% | 1 | | | | | | 2080 | 80% | 31% | 2 | 2.1 | 1.3 | 3.4 | | | 1940 | 90% | 26% | 3 | 1.9 | 1.1 | 3.1 | | | 2910 | 49% | 70% | 4 | 3.4 | 2.2 | 5.4 | | | 3150 | 35% | 80% | | | | | | | 3540 | 25% | 90% | | | | | | 24 hours | 2130 | 72% | 35% | 1 | | | | | | 1860 | 81% | 23% | 2 | 0.8 | 0.5 | 1.2 | | | 1700 | 91% | 18% | 3 | 1.1 | 0.7 | 1.6 | | | 2910 | 43% | 70% | 4 | 1.7 | 1.2 | 2.3 | | | 3150 | 28% | 80% | | | | | | | 3540 | 13% | 90% | | | | | | 48 hours | 2470 | 74% | 53% | 1 | | | | | | 2220 | 83% | 40% | 2 | 2.1 | 0.4 | 9.7 | | | 2130 | 91% | 35% | 3 | 3.8 | 1.0 | 14.5 | | | 2910 | 48% | 70% | 4 | 5.8 | 1.7 | 20.3 | | | 3150 | 39% | 80% | | | | | | | 3540 | 22% | 90% | | | | | Oct. 18, 2016 #### Midkine sCr or UO | | 0 hr prior to A | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|-----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 5.146 | 4.121 | 5.146 | 2.690 | 5.146 | 0.002 | | average | 17.661 | 12.486 | 17.661 | 2.690 | 17.661 | 4.680 | | stdev | 21.849 | 15.424 | 21.849 | 2.877 | 21.849 | na | | p (t-test) | | 0.422 | | 0.341 | | na | | min | 0.002 | 0.326 | 0.002 | 0.656 | 0.002 | 4.680 | | max | 72.865 | 48.646 | 72.865 | 4.725 | 72.865 | 4.680 | | n (Samp) | 57 | 13 | 57 | 2 | 57 | 1 | | n (Pat) | 37 | 13 | 37 | 2 | 37 | 1 | sCr only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|------------------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 4.019 | 11.724 | 4.019 | 5.802 | 4.019 | 30.690 | | average | 15.715 | 18.765 | 15.715 | 14.762 | 15.715 | 30.690 | | stdev | 20.369 | 19.678 | 20.369 | 21.340 | 20.369 | 35.804 | | p (t-test) | | 0.723 | | 0.927 | | 0.312 | | min | 0.002 | 0.604 | 0.002 | 0.889 | 0.002 | 5.373 | | max | 72.865 | 50.413 | 72.865 | 46.556 | 72.865 | 56.007 | | n (Samp) | 89 | 6 | 89 | 4 | 89 | 2 | | n (Pat) | 61 | 6 | 61 | 4 | 61 | 2 | UO only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 8.186 | 3.724 | 8.186 | 20.336 | 8.186 | 0.002 | | | average | 19.917 | 11.085 | 19.917 | 20.336 | 19.917 | 4.680 | | | stdev | 23.138 | 14.963 | 23.138 | 27.832 | 23.138 | na | | | p (t-test) | | 0.188 | | 0.980 | | na | | | min | 0.002 | 0.326 | 0.002 | 0.656 | 0.002 | 4.680 | | | max | 72.865 | 48.646 | 72.865 | 40.017 | 72.865 | 4.680 | | | n (Samp) | 42 | 14 | 42 | 2 | 42 | 1 | | | n (Pat) | 27 | 14 | 27 | 2 | 27 | 1 | | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.46 | 0.087 | 57 | 13 | 0.615 | | 24 hours | 0.27 | 0.153 | 57 | 2 | 0.135 | | 48 hours | 0.47 | 0.288 | 57 | 1 | 0.927 | sCr only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.60 | 0.126 | 89 | 6 | 0.423 | | 24 hours | 0.55 | 0.152 | 89 | 4 | 0.753 | | 48 hours | 0.74 | 0.204 | 89 | 2 | 0.236 | UO only | ı | Time prior | AUC | SE | nCohort 1 | nCohort 2 | n | |---|------------|------|-------|-----------|-----------|-------| | | AKI stage | 1100 | | neonor i | neonor 2 | P | | | 0 hours | 0.44 | 0.087 | 42 | 14 | 0.470 | | | 24 hours | 0.44 | 0.202 | 42 | 2 | 0.768 | | | 48 hours | 0.43 | 0.278 | 42 | 1 | 0.798 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | |----------------------|-----------------|------|------|----------|-----|-------|---------| | 0 hours | 1.8154762 | 77% | 37% | 1 | | | | | | 0.6001451 | 85% | 7% | 2 | 1.1 | 0.2 | 5.2 | | | 0.41705 | 92% | 4% | 3 | 1.4 | 0.3 | 5.9 | | | 24.521014 | 23% | 70% | 4 | 1.1 | 0.2 | 5.2 | | | 38.15427 | 8% | 81% | | | | | | | 58.20643 | 0% | 91% | | | | | | 24 hours | 0.6001451 | 100% | 7% | 1 | | | | |----------|-----------|------|-----|---|----|----|----| | | 0.6001451 | 100% | 7% | 2 | na | na | na | | | 0.6001451 | 100% | 7% | 3 | na | na | na | | | 24.521014 | 0% | 70% | 4 | na | na | na | | | 38.15427 | 0% | 81% | | | | | | | 58.20643 | 0% | 91% | | | | | | 48 hours | 3.8837139 | 100% | 47% | 1 | | | | | | 3.8837139 | 100% | 47% | 2 | na | na | na | | | 3.8837139 | 100% | 47% | 3 | na | na | na | | |
24.521014 | 0% | 70% | 4 | na | na | na | | | 38.15427 | 0% | 81% | | | | | | | 58.20643 | 0% | 91% | | | | | sCr only | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | |----------------------|-----------------|------|------|----------|-----|-------|---------| | 0 hours | 4.120827 | 83% | 52% | 1 | | | | | | 4.120827 | 83% | 52% | 2 | 0.0 | 0.0 | na | | | 0.6001451 | 100% | 13% | 3 | 3.1 | 0.2 | 51.5 | | | 23.377627 | 33% | 71% | 4 | 2.0 | 0.1 | 45.2 | | | 37.817259 | 17% | 81% | | | | | | | 50.930626 | 0% | 91% | | | | | | 24 hours | 4.679988 | 75% | 53% | 1 | | | | | | 0.8763587 | 100% | 22% | 2 | 0.0 | 0.0 | na | | | 0.8763587 | 100% | 22% | 3 | 2.1 | 0.1 | 47.6 | | | 23.377627 | 25% | 71% | 4 | 1.0 | 0.0 | 57.4 | | | 37.817259 | 25% | 81% | | | | | | | 50.930626 | 0% | 91% | | | | | | 48 hours | 5.2959736 | 100% | 56% | 1 | | | | | | 5.2959736 | 100% | 56% | 2 | na | na | na | | | 5.2959736 | 100% | 56% | 3 | na | na | na | | | 23.377627 | 50% | 71% | 4 | na | na | na | | | 37.817259 | 50% | 81% | | | | | | | 50.930626 | 50% | 91% | | | | | | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 2.1084701 | 71% | 36% | 1 | | | | | | 1.7559524 | 86% | 33% | 2 | 2.4 | 0.4 | 15.0 | | | 0.41705 | 93% | 5% | 3 | 4.5 | 0.8 | 25.0 | | | 25.482094 | 21% | 71% | 4 | 1.0 | 0.1 | 9.8 | | | 40.35533 | 7% | 81% | | | | | | | 58.544839 | 0% | 90% | | | | | | 24 hours | 0.647909 | 100% | 10% | 1 | | | | | | 0.647909 | 100% | 10% | 2 | 0.0 | 0.0 | na | | | 0.647909 | 100% | 10% | 3 | 0.0 | 0.0 | na | | | 25.482094 | 50% | 71% | 4 | 1.0 | 0.0 | 74.6 | | | 40.35533 | 0% | 81% | | | | | | | 58.544839 | 0% | 90% | | | | | | 48 hours | 3.7035281 | 100% | 43% | 1 | | | | | | 3.7035281 | 100% | 43% | 2 | na | na | na | | | 3.7035281 | 100% | 43% | 3 | na | na | na | | | 25.482094 | 0% | 71% | 4 | na | na | na | | | 40.35533 | 0% | 81% | | | | | | | 58.544839 | 0% | 90% | | | | | #### Serum amyloid P-component | sCr or U | UO | |----------|----| |----------|----| | | 0 hr prior to A | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|-----------------|-----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 4777.794 | 5269.103 | 4777.794 | 5335.126 | 4777.794 | 5911.409 | | average | 5429.356 | 5900.293 | 5429.356 | 5634.925 | 5429.356 | 5864.357 | | stdev | 2598.916 | 2923.675 | 2598.916 | 2733.024 | 2598.916 | 1615.939 | | p (t-test) | | 0.319 | | 0.641 | | 0.425 | | min | 96.224 | 1726.916 | 96.224 | 915.589 | 96.224 | 2435.350 | | max | 16315.493 | 16576.982 | 16315.493 | 15099.189 | 16315.493 | 9313.335 | | n (Samp) | 105 | 48 | 105 | 55 | 105 | 25 | | n (Pat) | 99 | 48 | 99 | 55 | 99 | 25 | sCr only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|----------------|-----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 4901.022 | 4965.322 | 4901.022 | 5479.072 | 4901.022 | 7025.322 | | | average | 5410.216 | 5730.188 | 5410.216 | 6527.434 | 5410.216 | 6721.597 | | | stdev | 2594.166 | 2543.963 | 2594.166 | 3060.956 | 2594.166 | 1258.388 | | | p (t-test) | | 0.633 | | 0.069 | | 0.083 | | | min | 96.224 | 2712.995 | 96.224 | 1775.429 | 96.224 | 4897.196 | | | max | 16576.982 | 11731.227 | 16576.982 | 15099.189 | 16576.982 | 9313.335 | | | n (Samp) | 242 | 16 | 242 | 20 | 242 | 12 | | | n (Pat) | 161 | 16 | 161 | 20 | 161 | 12 | | UO only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|-----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 5129.158 | 5619.867 | 5129.158 | 4951.655 | 5129.158 | 5489.238 | | average | 5466.850 | 6142.521 | 5466.850 | 5295.765 | 5466.850 | 5308.809 | | stdev | 2241.215 | 3084.026 | 2241.215 | 2476.546 | 2241.215 | 1442.404 | | p (t-test) | | 0.156 | | 0.686 | | 0.758 | | min | 1580.497 | 1726.916 | 1580.497 | 915.589 | 1580.497 | 2435.350 | | max | 16315.493 | 16576.982 | 16315.493 | 11719.795 | 16315.493 | 7635.468 | | n (Samp) | 96 | 40 | 96 | 44 | 96 | 21 | | n (Pat) | 84 | 40 | 84 | 44 | 84 | 21 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | P | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.55 | 0.051 | 105 | 48 | 0.299 | | 24 hours | 0.53 | 0.048 | 105 | 55 | 0.539 | | 48 hours | 0.61 | 0.065 | 105 | 25 | 0.086 | sCr only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.54 | 0.076 | 242 | 16 | 0.625 | | 24 hours | 0.62 | 0.069 | 242 | 20 | 0.085 | | 48 hours | 0.74 | 0.084 | 242 | 12 | 0.005 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.56 | 0.055 | 96 | 40 | 0.271 | | 24 hours | 0.48 | 0.052 | 96 | 44 | 0.688 | | 48 hours | 0.52 | 0.070 | 96 | 21 | 0.824 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | |----------------------|-----------------|------|------|----------|-----|-------|---------| | 0 hours | 4189.319 | 71% | 34% | 1 | | | | | | 3804.4829 | 81% | 26% | 2 | 0.7 | 0.4 | 1.1 | | | 2574.8577 | 92% | 7% | 3 | 1.3 | 0.8 | 2.1 | | | 6201.8056 | 35% | 70% | 4 | 1.7 | 1.1 | 2.7 | | | 6895.0273 | 33% | 80% | | | | | | | 8454.6109 | 8% | 90% | | | | | | 24 hours | 4055.2483 | 71% | 31% | I 1 | ı | | ı ı | |----------|-----------|------|------|-----|-----|-----|------| | 24 HOUIS | 4000.2460 | /170 | 3170 | 1 | | | | | | 3704.7846 | 80% | 25% | 2 | 1.0 | 0.6 | 1.6 | | | 2272.6685 | 91% | 5% | 3 | 1.6 | 1.0 | 2.4 | | | 6201.8056 | 31% | 70% | 4 | 1.4 | 0.9 | 2.2 | | | 6895.0273 | 25% | 80% | | | | | | | 8454.6109 | 18% | 90% | | | | | | 48 hours | 5360.051 | 72% | 60% | 1 | | | | | | 4394.6994 | 80% | 40% | 2 | 1.3 | 0.4 | 4.8 | | | 3804.4829 | 92% | 26% | 3 | 4.4 | 1.6 | 12.0 | | | 6201.8056 | 48% | 70% | 4 | 3.1 | 1.1 | 8.8 | | | 6895.0273 | 32% | 80% | | | | | | | 8454.6109 | 4% | 90% | | | | | sCr only | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 4189.319 | 75% | 35% | 1 | | | | | | 3439.4811 | 81% | 18% | 2 | 1.0 | 0.3 | 2.8 | | | 2870.5973 | 94% | 13% | 3 | 0.5 | 0.1 | 2.2 | | | 6201.8056 | 38% | 70% | 4 | 1.5 | 0.6 | 3.7 | | | 7006.5873 | 38% | 80% | | | | | | | 8367.1538 | 19% | 90% | | | | | | 24 hours | 5324.4963 | 70% | 57% | 1 | | | | | | 4189.319 | 80% | 35% | 2 | 2.0 | 0.4 | 9.4 | | | 3956.1005 | 90% | 28% | 3 | 3.8 | 1.0 | 14.3 | | | 6201.8056 | 35% | 70% | 4 | 3.7 | 1.0 | 14.1 | | | 7006.5873 | 35% | 80% | | | | | | | 8367.1538 | 25% | 90% | | | | | | 48 hours | 5653.03 | 75% | 62% | 1 | | | | | | 5427.0131 | 83% | 58% | 2 | na | na | na | | | 5296.6572 | 92% | 57% | 3 | na | na | na | | | 6201.8056 | 67% | 70% | 4 | na | na | na | | | 7006.5873 | 50% | 80% | | | | | | | 8367.1538 | 8% | 90% | | | | | | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 4394.6994 | 70% | 35% | 1 | | | | | | 3811.5919 | 80% | 21% | 2 | 0.7 | 0.4 | 1.3 | | | 3425.1197 | 90% | 15% | 3 | 0.6 | 0.3 | 1.2 | | | 6201.8056 | 40% | 71% | 4 | 1.9 | 1.1 | 3.2 | | | 6895.0273 | 38% | 80% | | | | | | | 8435.3903 | 10% | 91% | | | | | | 24 hours | 3970.7915 | 70% | 25% | 1 | | | | | | 2870.5973 | 82% | 10% | 2 | 1.1 | 0.7 | 2.0 | | | 2272.6685 | 91% | 4% | 3 | 1.1 | 0.7 | 2.0 | | | 6201.8056 | 27% | 71% | 4 | 1.3 | 0.8 | 2.2 | | | 6895.0273 | 20% | 80% | | | | | | | 8435.3903 | 16% | 91% | | | | | | 48 hours | 4394.6994 | 71% | 35% | 1 | | | | | | 3912.6934 | 81% | 23% | 2 | 0.6 | 0.2 | 1.8 | | | 3425.1197 | 90% | 15% | 3 | 1.8 | 0.8 | 4.1 | | | 6201.8056 | 33% | 71% | 4 | 1.0 | 0.4 | 2.5 | | | 6895.0273 | 14% | 80% | | | | | | | 8435.3903 | 0% | 91% | | | | | FIGURE 6 Fatty acid binding protein, heart | sCr or U | JO | |----------|----| |----------|----| | | 0 hr prior to A | AKI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|-----------------|-----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 7.870 | 28.350 | 7.870 | 23.500 | 7.870 | 25.850 | | average | 29.799 | 86.504 | 29.799 | 157.776 | 29.799 | 83.122 | | stdev | 78.132 | 183.922 | 78.132 | 343.908 | 78.132 | 128.747 | | p (t-test) | | 0.001 | | 0.000 | | 0.006 | | min | 0.030 | 1.440 | 0.030 | 0.030 | 0.030 | 1.440 | | max | 944.000 | 809.000 | 944.000 | 1477.000 | 944.000 | 463.000 | | n (Samp) | 434 | 28 | 434 | 36 | 434 | 18 | | n (Pat) | 173 | 28 | 173 | 36 | 173 | 18 | sCr only | , in the second | 0 hr prior toA | .KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |-----------------|----------------|-----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 8.920 | 91.250 | 8.920 | 48.250 | 8.920 | 84.700 | | | average | 38.900 | 208.083 | 38.900 | 363.564 | 38.900 | 181.943 | | | stdev | 103.113 | 301.551 | 103.113 | 564.084 | 103.113 | 233.374 | | | p (t-test) | | 0.000 | | 0.000 | | 0.000 | | | min | 0.030 | 17.900 | 0.030 | 4.660 | 0.030 | 13.500 | | | max | 944.000 | 809.000 | 944.000 | 1477.000 | 944.000
| 572.000 | | | n (Samp) | 542 | 6 | 542 | 10 | 542 | 7 | | | n (Pat) | 208 | 6 | 208 | 10 | 208 | 7 | | UO only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|----------------|----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 8.445 | 26.600 | 8.445 | 36.350 | 8.445 | 25.850 | | | average | 30.058 | 57.893 | 30.058 | 93.107 | 30.058 | 63.806 | | | stdev | 76.890 | 119.253 | 76.890 | 178.545 | 76.890 | 91.809 | | | p (t-test) | | 0.084 | | 0.000 | | 0.089 | | | min | 0.030 | 1.440 | 0.030 | 0.030 | 0.030 | 1.440 | | | max | 944.000 | 623.000 | 944.000 | 944.000 | 944.000 | 324.000 | | | n (Samp) | 356 | 27 | 356 | 32 | 356 | 16 | | | n (Pat) | 138 | 27 | 138 | 32 | 138 | 16 | | sCr or UO | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.72 | 0.056 | 434 | 28 | 0.000 | | 24 hours | 0.70 | 0.050 | 434 | 36 | 0.000 | | 48 hours | 0.69 | 0.071 | 434 | 18 | 0.009 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.87 | 0.094 | 542 | 6 | 0.000 | | 24 hours | 0.73 | 0.091 | 542 | 10 | 0.010 | | 48 hours | 0.83 | 0.095 | 542 | 7 | 0.000 | UO only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | р | |------------|------|-------|-----------|-----------|-------| | AKI stage | 0.69 | 0.058 | 356 | 27 | 0.001 | | 0 hours | | | | 21 | | | 24 hours | 0.69 | 0.054 | 356 | 32 | 0.000 | | 48 hours | 0.66 | 0.076 | 356 | 16 | 0.034 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% (
OR | CI of | |----------------------|-----------------|------|------|----------|-----|-------------|-------| | 0 hours | 11.5 | 71% | 62% | 1 | | | | | | 10 | 82% | 59% | 2 | 1.5 | 0.3 | 8.0 | | | 3.37 | 93% | 28% | 3 | 4.2 | 1.2 | 14.9 | | | 16.1 | 64% | 70% | 4 | 8.4 | 2.7 | 26.4 | | | 33.4 | 39% | 80% | | | | | | | 71.6 | 25% | 90% | | | | | |----------|------|-----|-----|---|-----|-----|-----| | 24 hours | 11 | 72% | 62% | 1 | | | | | | 8.42 | 81% | 52% | 2 | 0.2 | 0.0 | 1.6 | | | 1.93 | 94% | 20% | 3 | 2.1 | 1.2 | 3.6 | | | 16.1 | 61% | 70% | 4 | 3.1 | 1.9 | 5.0 | | | 33.4 | 47% | 80% | | | | | | | 71.6 | 33% | 90% | | | | | | 48 hours | 13.3 | 72% | 67% | 1 | | | | | | 2.99 | 83% | 26% | 2 | 0.3 | 0.0 | 4.6 | | | 1.83 | 94% | 19% | 3 | 1.7 | 0.6 | 5.0 | | | 16.1 | 61% | 70% | 4 | 3.2 | 1.3 | 7.9 | | | 33.4 | 44% | 80% | | | | | | | 71.6 | 28% | 90% | · | | | | | | Cutoff | | | | | 95% | CI of | |----------------------|--------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 11.5 | 70% | 60% | 1 | | | | | | 9.97 | 81% | 57% | 2 | 1.5 | 0.3 | 8.0 | | | 3.25 | 93% | 26% | 3 | 4.8 | 1.4 | 16.6 | | | 17.5 | 63% | 70% | 4 | 7.3 | 2.2 | 23.6 | | | 33.9 | 37% | 80% | | | | | | | 76.8 | 15% | 90% | | | | | | 24 hours | 13.3 | 72% | 65% | 1 | | | | | | 5.18 | 81% | 37% | 2 | 0.2 | 0.0 | 1.6 | | | 1.93 | 94% | 19% | 3 | 1.4 | 0.7 | 2.5 | | | 17.5 | 66% | 70% | 4 | 3.2 | 2.0 | 5.3 | | | 33.9 | 50% | 80% | | | | | | | 76.8 | 34% | 90% | | | | | | 48 hours | 9.97 | 75% | 57% | 1 | | | | | | 2.99 | 81% | 25% | 2 | 0.0 | 0.0 | na | | | 1.81 | 94% | 18% | 3 | 1.3 | 0.5 | 3.2 | | | 17.5 | 63% | 70% | 4 | 1.8 | 0.8 | 4.1 | | | 33.9 | 44% | 80% | | | | | | | 76.8 | 25% | 90% | | | | | #### Hepatocyte growth factor sCr or UO | | 0 hr prior to A | AKI stage | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | | |------------|-----------------|-----------|----------------|-----------|--------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 785.857 | 800.061 | 785.857 | 959.117 | 785.857 | 1140.990 | | | average | 1837.846 | 4370.706 | 1837.846 | 1873.697 | 1837.846 | 1421.852 | | | stdev | 2549.628 | 11864.960 | 2549.628 | 2004.545 | 2549.628 | 1536.897 | | | p (t-test) | | 0.009 | | 0.943 | | 0.520 | | | min | 51.808 | 312.956 | 51.808 | 225.202 | 51.808 | 180.668 | | | max | 17531.948 | 52712.475 | 17531.948 | 7301.432 | 17531.948 | 6754.272 | | | n (Samp) | 230 | 19 | 230 | 28 | 230 | 16 | | | n (Pat) | 158 | 19 | 158 | 28 | 158 | 16 | | sCr only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|----------------|-----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 847.303 | 27453.357 | 847.303 | 1517.974 | 847.303 | 960.960 | | | average | 1869.522 | 27453.357 | 1869.522 | 3111.683 | 1869.522 | 1219.269 | | | stdev | 2768.460 | 35721.787 | 2768.460 | 3452.908 | 2768.460 | 647.369 | | | p (t-test) | | 0.000 | | 0.244 | | 0.601 | | | min | 51.808 | 2194.240 | 51.808 | 452.950 | 51.808 | 591.579 | | | max | 25326.471 | 52712.475 | 25326.471 | 8813.508 | 25326.471 | 2260.899 | | | n (Samp) | 295 | 2 | 295 | 7 | 295 | 5 | | | n (Pat) | 187 | 2 | 187 | 7 | 187 | 5 | | UO only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|----------------|----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 748.776 | 752.858 | 748.776 | 1136.803 | 748.776 | 1319.719 | | | average | 1846.731 | 1608.159 | 1846.731 | 3739.396 | 1846.731 | 1576.384 | | | stdev | 2650.927 | 1941.760 | 2650.927 | 10136.948 | 2650.927 | 1634.436 | | | p (t-test) | | 0.703 | | 0.033 | | 0.707 | | | min | 51.808 | 312.956 | 51.808 | 225.202 | 51.808 | 180.668 | | | max | 17531.948 | 7852.366 | 17531.948 | 52712.475 | 17531.948 | 6754.272 | | | n (Samp) | 198 | 19 | 198 | 26 | 198 | 14 | | | n (Pat) | 132 | 19 | 132 | 26 | 132 | 14 | | sCr or UO | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.57 | 0.071 | 230 | 19 | 0.357 | | 24 hours | 0.56 | 0.059 | 230 | 28 | 0.308 | | 48 hours | 0.53 | 0.076 | 230 | 16 | 0.676 | sCr only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.88 | 0.159 | 295 | 2 | 0.017 | | 24 hours | 0.65 | 0.114 | 295 | 7 | 0.178 | | 48 hours | 0.57 | 0.134 | 295 | 5 | 0.619 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.54 | 0.071 | 198 | 19 | 0.555 | | 24 hours | 0.58 | 0.062 | 198 | 26 | 0.176 | | 48 hours | 0.55 | 0.082 | 198 | 14 | 0.517 | | | Cutoff | | | | | 95% CI of | | |----------------------|-----------|------|------|----------|-----|-----------|------| | Time prior ΛKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 575.20844 | 74% | 38% | 1 | | | | | | 513.85383 | 84% | 34% | 2 | 3.8 | 1.0 | 14.4 | | | 358.54972 | 95% | 19% | 3 | 3.2 | 0.8 | 12.7 | | | 1863.8946 | 37% | 70% | 4 | 2.0 | 0.4 | 9.4 | | | 2715.1627 | 21% | 80% | | | | | | | 4719.486 | 16% | 90% | | | | | | 24 hours | 660.41281 | 71% | 47% | 1 | I | I 1 | 1 1 | |----------|-----------|-----|-----|---|-----|-----|-----| | | 468.6146 | 82% | 30% | 2 | 1.8 | 0.8 | 4.2 | | | 309.45606 | 93% | 16% | 3 | 2.5 | 1.1 | 5.3 | | | 1863.8946 | 32% | 70% | 4 | 2.1 | 0.9 | 4.7 | | | 2715.1627 | 18% | 80% | | | | | | | 4719.486 | 14% | 90% | | | | | | 48 hours | 611.77344 | 75% | 43% | 1 | | | | | | 591.03997 | 81% | 40% | 2 | 1.0 | 0.2 | 3.9 | | | 298.34033 | 94% | 15% | 3 | 3.3 | 1.3 | 8.6 | | | 1863.8946 | 19% | 70% | 4 | 0.3 | 0.0 | 4.6 | | | 2715.1627 | 6% | 80% | | | | | | | 4719.486 | 6% | 90% | | | | | | τ | Ю | only | |---|---|------| | | | | | Oonly | Cutoff | | | | | 95% | CI of | |----------------------|-----------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 575.20844 | 74% | 39% | 1 | | | | | | 513.85383 | 84% | 35% | 2 | 3.9 | 1.0 | 14.8 | | | 358.54972 | 95% | 20% | 3 | 3.3 | 0.8 | 13.0 | | | 1823.3743 | 26% | 70% | 4 | 2.0 | 0.4 | 9.6 | | | 2715.1627 | 16% | 80% | | | | | | | 4719.486 | 11% | 90% | | | | | | 24 hours | 649.07174 | 73% | 48% | 1 | | | | | | 474.87493 | 81% | 31% | 2 | 1.3 | 0.5 | 3.3 | | | 307.96674 | 92% | 17% | 3 | 2.2 | 1.0 | 4.9 | | | 1823.3743 | 35% | 70% | 4 | 2.5 | 1.1 | 5.5 | | | 2715.1627 | 19% | 80% | | | | | | | 4719.486 | 15% | 90% | | | | | | 48 hours | 709.80187 | 71% | 49% | 1 | | | | | | 401.51729 | 86% | 22% | 2 | 0.7 | 0.1 | 3.6 | | | 298.34033 | 93% | 16% | 3 | 2.1 | 0.7 | 6.1 | | | 1823.3743 | 29% | 70% | 4 | 1.0 | 0.3 | 4.0 | | | 2715.1627 | 7% | 80% | | · · | | | | | 4719.486 | 7% | 90% | | | | | #### Interleukin-16 sCr or UO | | 0 hr prior to A | AKI stage | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | |------------|-----------------|-----------|----------------|-----------|--------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 465.500 | 618.000 | 465.500 | 559.500 | 465.500 | 528.000 | | average | 546.730 | 1220.893 | 546.730 | 729.083 | 546.730 | 671.611 | | stdev | 582.350 | 3070.443 | 582.350 | 561.517 | 582.350 | 447.400 | | p (t-test) | | 0.000 | | 0.071 | | 0.369 | | min | 161.000 | 153.000 | 161.000 | 190.000 | 161.000 | 263.000 | | max | 11500.000 | 16800.000 | 11500.000 | 3110.000 | 11500.000 | 1630.000 | | n (Samp) | 434 | 28 | 434 | 36 | 434 | 18 | | n (Pat) | 173 | 28 | 173 | 36 | 173 | 18 | sCr only | • | 0 hr prior toA | KI stage | 24 hr prior toAKI stage | | 48 hr prior toAKI stage | | |------------|----------------|-----------|-------------------------|----------
-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 466.000 | 911.000 | 466.000 | 823.000 | 466.000 | 1040.000 | | average | 559.373 | 3556.167 | 559.373 | 804.700 | 559.373 | 1010.000 | | stdev | 553.796 | 6496.693 | 553.796 | 354.016 | 553.796 | 493.955 | | p (t-test) | | 0.000 | | 0.164 | | 0.033 | | min | 153.000 | 567.000 | 153.000 | 302.000 | 153.000 | 365.000 | | max | 11500.000 | 16800.000 | 11500.000 | 1280.000 | 11500.000 | 1630.000 | | n (Samp) | 542 | 6 | 542 | 10 | 542 | 7 | | n (Pat) | 208 | 6 | 208 | 10 | 208 | 7 | UO only | | 0 hr prior toA | .KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|----------------|-----------|----------------|-----------|-------------------------|-----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 465.500 | 554.000 | 465.500 | 554.000 | 465.500 | 570.000 | | | average | 527.596 | 627.074 | 527.596 | 701.563 | 527.596 | 1595.563 | | | stdev | 246.463 | 328.308 | 246.463 | 573.322 | 246.463 | 4066.286 | | | p (t-test) | | 0.049 | | 0.001 | | 0.000 | | | min | 172.000 | 153.000 | 172.000 | 190.000 | 172.000 | 263.000 | | | max | 1630.000 | 1600.000 | 1630.000 | 3110.000 | 1630.000 | 16800.000 | | | n (Samp) | 356 | 27 | 356 | 32 | 356 | 16 | | | n (Pat) | 138 | 27 | 138 | 32 | 138 | 16 | | sCr or UO | ١ | Time prior | AUC | SE | nCohort 1 | nCohort 2 | р | |---|------------|------|-------|-----------|-----------|-------| | L | AKI stage | | | | | | | | 0 hours | 0.63 | 0.058 | 434 | 28 | 0.029 | | | 24 hours | 0.61 | 0.052 | 434 | 36 | 0.041 | | Γ | 48 hours | 0.55 | 0.071 | 434 | 18 | 0.452 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.87 | 0.093 | 542 | 6 | 0.000 | | 24 hours | 0.72 | 0.092 | 542 | 10 | 0.015 | | 48 hours | 0.77 | 0.105 | 542 | 7 | 0.009 | UO only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.59 | 0.059 | 356 | 27 | 0.141 | | 24 hours | 0.58 | 0.055 | 356 | 32 | 0.132 | | 48 hours | 0.56 | 0.076 | 356 | 16 | 0.421 | | | Cutoff | | | | | 95% | CI of | |----------------------|--------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 438 | 71% | 44% | 1 | | | | | | 346 | 82% | 22% | 2 | 0.5 | 0.2 | 1.3 | | | 261 | 93% | 8% | 3 | 0.8 | 0.4 | 1.8 | | | 579 | 54% | 70% | 4 | 2.5 | 1.5 | 4.1 | | | 655 | 46% | 80% | | | | | | | 829 | 29% | 90% | | | | | | 24 hours | 399 | l 72% | 35% | l 1 | I | I | 1 1 | |----------|-----|--------------|-----|------------|-----|-----|-----| | | 360 | 81% | 25% | 2 | 0.6 | 0.3 | 1.2 | | | 295 | 92% | 13% | 3 | 1.0 | 0.6 | 1.7 | | | 579 | 47% | 70% | 4 | 2.0 | 1.3 | 3.0 | | | 655 | 39% | 80% | | | | | | | 829 | 28% | 90% | | | | | | 48 hours | 364 | 72% | 25% | 1 | | | | | | 327 | 83% | 18% | 2 | 0.6 | 0.2 | 1.7 | | | 310 | 94% | 15% | 3 | 0.8 | 0.3 | 2.0 | | | 579 | 39% | 70% | 4 | 1.2 | 0.6 | 2.6 | | | 655 | 33% | 80% | | | | | | | 829 | 22% | 90% | | | | | sCr only | · | Cutoff | | | | | 95% | CI of | |----------------------|--------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 655 | 83% | 78% | 1 | | | | | | 655 | 83% | 78% | 2 | na | na | na | | | 566 | 100% | 67% | 3 | na | na | na | | | 592 | 83% | 70% | 4 | na | na | na | | | 683 | 67% | 80% | | | | | | | 914 | 50% | 90% | | | | | | 24 hours | 589 | 70% | 70% | 1 | | | | | | 525 | 80% | 61% | 2 | 0.0 | 0.0 | na | | | 362 | 90% | 25% | 3 | 1.0 | 0.1 | 7.3 | | | 592 | 60% | 70% | 4 | 3.1 | 0.8 | 11.8 | | | 683 | 50% | 80% | | | | | | | 914 | 50% | 90% | | | | | | 48 hours | 996 | 71% | 93% | 1 | | | | | | 404 | 86% | 37% | 2 | na | na | na | | | 364 | 100% | 25% | 3 | na | na | na | | | 592 | 71% | 70% | 4 | na | na | na | | | 683 | 71% | 80% | | | | | | | 914 | 71% | 90% | | | | | | | Cutoff | | | | | 95% | CI of | |----------------------|--------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 416 | 70% | 39% | 1 | | | | | | 346 | 81% | 21% | 2 | 0.6 | 0.3 | 1.5 | | | 261 | 93% | 7% | 3 | 0.8 | 0.4 | 1.7 | | | 592 | 44% | 70% | 4 | 2.1 | 1.2 | 3.6 | | | 673 | 37% | 80% | | | | | | | 883 | 26% | 90% | | | | | | 24 hours | 399 | 72% | 35% | 1 | | | | | | 360 | 81% | 24% | 2 | 0.7 | 0.3 | 1.4 | | | 295 | 91% | 13% | 3 | 1.3 | 0.8 | 2.3 | | | 592 | 38% | 70% | 4 | 1.6 | 1.0 | 2.7 | | | 673 | 34% | 80% | | | | | | | 883 | 19% | 90% | | | | | | 48 hours | 333 | 75% | 18% | 1 | | | | | | 327 | 81% | 17% | 2 | 0.2 | 0.0 | 2.1 | | | 307 | 94% | 15% | 3 | 1.0 | 0.4 | 2.3 | | | 592 | 31% | 70% | 4 | 1.0 | 0.4 | 2.3 | | | 673 | 31% | 80% | | | | | | | 883 | 19% | 90% | | | | | #### Interleukin-2 sCr or UO | | 0 hr prior to A | AKI stage | 24 hr prior to . | AKI stage | 48 hr prior to AKI stage | | | |------------|-----------------|-----------|------------------|-----------|--------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 0.507 | 0.567 | 0.507 | 0.718 | 0.507 | 0.576 | | | average | 0.862 | 0.660 | 0.862 | 1.097 | 0.862 | 0.824 | | | stdev | 1.545 | 0.433 | 1.545 | 1.050 | 1.545 | 0.671 | | | p (t-test) | | 0.570 | | 0.435 | | 0.921 | | | min | 0.000 | 0.125 | 0.000 | 0.209 | 0.000 | 0.167 | | | max | 19.127 | 1.719 | 19.127 | 5.074 | 19.127 | 2.654 | | | n (Samp) | 230 | 19 | 230 | 28 | 230 | 16 | | | n (l'at) | 158 | 19 | 158 | 28 | 158 | 16 | | sCr only | | 0 hr prior toA | KI stage | 24 hr prior to/ | \KI stage | 48 hr prior toΛKI stage | | | |------------|----------------|----------|-----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 0.537 | 0.565 | 0.537 | 0.541 | 0.537 | 0.575 | | | average | 0.871 | 0.565 | 0.871 | 0.976 | 0.871 | 0.488 | | | stdev | 1.419 | 0.092 | 1.419 | 0.819 | 1.419 | 0.270 | | | p (t-test) | | 0.761 | | 0.845 | | 0.547 | | | min | 0.000 | 0.500 | 0.000 | 0.294 | 0.000 | 0.167 | | | max | 19.127 | 0.630 | 19.127 | 2.538 | 19.127 | 0.844 | | | n (Samp) | 295 | 2 | 295 | 7 | 295 | 5 | | | n (Pat) | 187 | 2 | 187 | 7 | 187 | 5 | | UO only | | 0 hr prior to AKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|-------------------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 0.535 | 0.567 | 0.535 | 0.718 | 0.535 | 0.609 | | average | 0.934 | 0.633 | 0.934 | 1.109 | 0.934 | 0.895 | | stdev | 1.650 | 0.458 | 1.650 | 1.081 | 1.650 | 0.679 | | p (t-test) | | 0.431 | | 0.599 | | 0.930 | | min | 0.000 | 0.000 | 0.000 | 0.209 | 0.000 | 0.207 | | max | 19.127 | 1.719 | 19.127 | 5.074 | 19.127 | 2.654 | | n (Samp) | 198 | 19 | 198 | 26 | 198 | 14 | | n (Pat) | 132 | 19 | 132 | 26 | 132 | 14 | sCr or UO | Time prior | AUC | SE | nCohort 1 | nCohort 2 | р | |------------|------|-------|-----------|-----------|-------| | ΛKI stage | | | | | | | 0 hours | 0.51 | 0.070 | 230 | 19 | 0.843 | | 24 hours | 0.63 | 0.059 | 230 | 28 | 0.023 | | 48 hours | 0.55 | 0.077 | 230 | 16 | 0.494 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.53 | 0.209 | 295 | 2 | 0.874 | | 24 hours | 0.58 | 0.114 | 295 | 7 | 0.507 | | 48 hours | 0.42 | 0.121 | 295 | 5 | 0.485 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.46 | 0.068 | 198 | 19 | 0.606 | | 24 hours | 0.61 | 0.062 | 198 | 26 | 0.069 | | 48 hours | 0.58 | 0.082 | 198 | 14 | 0.323 | sCr or UC | | Cutoff | | | | | 95% | CI of | |----------------------|-----------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 0.3397476 | 74% | 27% | 1 | | | | | | 0.2818205 | 84% | 20% | 2 | 0.6 | 0.2 | 1.8 | | | 0.1689911 | 95% | 8% | 3 | 1.2 | 0.6 | 2.7 | | | 0.7604118 | 32% | 70% | 4 | 1.0 | 0.4 | 2.3 | | | 0.9730253 | 21% | 80% | | | | | | | 1.6431131 | 5% | 90% | | | | | | 24 hours | 0.536801 | 71% | 53% | 1 | 1 | | | |----------|-----------|-----|-----|---|-----|-----|------| | | 0.3872229 | 82% | 33% | 2 | 1.7 | 0.6 | 5.1 | | | 0.2920348 | 93% | 21% | 3 | 3.3 | 1.3 | 8.5 | | | 0.7604118 | 50% | 70% | 4 | 4.1 | 1.7 | 10.2 | | | 0.9730253 | 36% | 80% | | | | | | | 1.6431131 | 18% | 90% | | | | | | 48 hours | 0.3701848 | 75% | 31% | 1 | | | | | | 0.3498805 | 81% | 28% | 2 | 1.3 | 0.4 | 4.5 | | | 0.1974446 | 94% | 9% | 3 | 1.0 | 0.3 | 4.0 | | | 0.7604118 | 38% | 70% | 4 | 2.1 | 0.7 | 5.9 | | | 0.9730253 | 31% | 80% | | | | | | | 1.6431131 | 13% | 90% | | | | | sCr only | | Cutoff | | | | | 95% | CLof | |----------------------|-----------|------|------|----------|------------------|-----|------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 0.4991843 | 100% | 46% | 1 | | | | | | 0.4991843 | 100% | 46% | 2 | na | na | na | | | 0.4991843 | 100% | 46% | 3 | na | na | na | | | 0.798842 | 0% | 70% | 4 | na | na | na | | | 1.0624848 | 0% | 80% | | | | | | | 1.8023893 | 0% | 91% | | | | | | 24 hours | 0.4625933 | 71% | 41% | 1 | | | | | | 0.3397476 | 86% | 25% | 2 | 2.0 | 0.1 | 39.9 | | | 0.2920348 | 100% | 20% | 3 | 1.0 | 0.0 | 53.1 | | | 0.798842 | 43% | 70% | 4 | 3.0 | 0.2 | 43.8 | | | 1.0624848 | 43% | 80% | | | | | | | 1.8023893 | 14% | 91% | | | | | | 48 hours | 0.2697168 | 80% | 16% | 1 | | | | | | 0.2697168 | 80% | 16% | 2 | na | na | na | | | 0.1572836 | 100%
| 6% | 3 | na | na | na | | | 0.798842 | 20% | 70% | 4 | na | na | na | | | 1.0624848 | 0% | 80% | | , and the second | | | | | 1.8023893 | 0% | 91% | | | | | | | Cutoff | | | | | 95% | CI of | |----------------------|-----------|------|------|----------|-----|-----|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 0.2894797 | 74% | 18% | 1 | | | | | | 0.2369188 | 84% | 9% | 2 | 1.3 | 0.6 | 2.8 | | | 0.1018729 | 95% | 2% | 3 | 0.4 | 0.1 | 1.6 | | | 0.8014655 | 32% | 70% | 4 | 1.3 | 0.6 | 2.8 | | | 1.0624848 | 21% | 80% | | | | | | | 1.9083031 | 0% | 90% | | | | | | 24 hours | 0.4991843 | 73% | 46% | 1 | | | | | | 0.3872229 | 81% | 30% | 2 | 1.3 | 0.5 | 3.3 | | | 0.3448618 | 92% | 26% | 3 | 2.2 | 1.0 | 4.9 | | | 0.8014655 | 46% | 70% | 4 | 2.5 | 1.1 | 5.5 | | | 1.0624848 | 35% | 80% | | | | | | | 1.9083031 | 15% | 90% | | | | | | 48 hours | 0.5018027 | 71% | 47% | 1 | | | | | | 0.3701848 | 86% | 28% | 2 | 4.2 | 0.3 | 53.2 | | | 0.3498805 | 93% | 26% | 3 | 4.2 | 0.3 | 53.2 | | | 0.8014655 | 36% | 70% | 4 | 5.4 | 0.5 | 61.6 | | | 1.0624848 | 36% | 80% | | | | | | | 1.9083031 | 7% | 90% | | | | | #### Interleukin-12 p40 sCr or UO | | 0 hr prior to ΛKI stage | | 24 hr prior to | ΛKI stage | 48 hr prior to AKI stage | | |------------|-------------------------|----------|----------------|-----------|--------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort I | Cohort 2 | Cohort 1 | Cohort 2 | | median | 29.421 | 24.796 | 29.421 | 20.981 | 29.421 | 28.057 | | average | 37.589 | 32.490 | 37.589 | 26.235 | 37.589 | 39.505 | | stdev | 37.641 | 22.888 | 37.641 | 22.375 | 37.641 | 31.171 | | p (t-test) | | 0.562 | | 0.120 | | 0.843 | | min | 0.000 | 2.416 | 0.000 | 0.000 | 0.000 | 0.000 | | max | 230.675 | 74.865 | 230.675 | 79.271 | 230.675 | 107.372 | | n (Samp) | 230 | 19 | 230 | 28 | 230 | 16 | | n (Pat) | 158 | 19 | 158 | 28 | 158 | 16 | Oct. 18, 2016 sCr only | ser only | | | | | | | |------------|----------------|----------|----------------|-----------|----------------|-----------| | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 29.143 | 16.864 | 29.143 | 10.418 | 29.143 | 21.542 | | average | 37.181 | 16.864 | 37.181 | 16.871 | 37.181 | 30.226 | | stdev | 35.168 | 0.098 | 35.168 | 18.872 | 35.168 | 36.405 | | p (t-test) | | 0.415 | | 0.129 | | 0.661 | | min | 0.000 | 16.795 | 0.000 | 0.000 | 0.000 | 0.000 | | max | 230.675 | 16.933 | 230.675 | 54.997 | 230.675 | 87.251 | | n (Samp) | 295 | 2 | 295 | 7 | 295 | 5 | | n (Pat) | 187 | 2 | 187 | 7 | 187 | 5 | UO only | | 0 hr prior toΛKI stage | | 24 hr prior to | \KI stage | 48 hr prior to | AKI stage | |------------|------------------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 29.340 | 27.679 | 29.340 | 20.881 | 29.340 | 28.057 | | average | 37.224 | 36.534 | 37.224 | 26.338 | 37.224 | 38.587 | | stdev | 36.469 | 26.001 | 36.469 | 21.695 | 36.469 | 28.968 | | p (t-test) | | 0.936 | | 0.139 | | 0.891 | | min | 0.000 | 2.416 | 0.000 | 0.000 | 0.000 | 9.604 | | max | 230.675 | 90.638 | 230.675 | 79.271 | 230.675 | 107.372 | | n (Samp) | 198 | 19 | 198 | 26 | 198 | 14 | | n (Pat) | 132 | 19 | 132 | 26 | 132 | 14 | sCr or UO | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.49 | 0.069 | 230 | 19 | 0.910 | | 24 hours | 0.41 | 0.054 | 230 | 28 | 0.094 | | 48 hours | 0.53 | 0.076 | 230 | 16 | 0.654 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.28 | 0.149 | 295 | 2 | 0.136 | | 24 hours | 0.27 | 0.080 | 295 | 7 | 0.005 | | 48 hours | 0.41 | 0.120 | 295 | 5 | 0.457 | UO only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.53 | 0.070 | 198 | 19 | 0.673 | | 24 hours | 0.41 | 0.056 | 198 | 26 | 0.107 | | 48 hours | 0.53 | 0.081 | 198 | 14 | 0.669 | s<u>Cr or</u> UO | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 16.782721 | 74% | 28% | 1 | | | | | | 13.217232 | 84% | 22% | 2 | 0.0 | 0.0 | na | | | 6.8184348 | 95% | 13% | 3 | 1.2 | 0.7 | 2.2 | | | 40.115254 | 37% | 70% | 4 | 0.6 | 0.2 | 1.3 | | | 50.721949 | 26% | 80% | | | | | | | 73.080875 | 11% | 90% | | | | | | 24 hours | 11.758032 | 71% | 19% | 1 1 | I | I | | |----------|-----------|-----|-----|-----|-----|-----|-----| | | 3.3229148 | 82% | 10% | 2 | 0.7 | 0.3 | 1.6 | | | 1.846505 | 93% | 9% | 3 | 1.4 | 0.7 | 2.6 | | | 40.115254 | 25% | 70% | 4 | 1.8 | 1.0 | 3.3 | | | 50.721949 | 18% | 80% | | | | | | | 73.080875 | 4% | 90% | | | | | | 48 hours | 20.314692 | 75% | 38% | 1 | | | | | | 15.666709 | 81% | 26% | 2 | 2.1 | 0.7 | 5.9 | | | 9.4129279 | 94% | 16% | 3 | 0.7 | 0.1 | 3.6 | | | 40.115254 | 38% | 70% | 4 | 1.7 | 0.6 | 5.2 | | | 50.721949 | 31% | 80% | | | | | | | 73.080875 | 19% | 90% | | | | | sCr only | SCI OHLY | | | | | | | | |----------------------|-----------------|------|------|----------|-----|-------|---------| | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% (| I of OR | | 0 hours | 16.782721 | 100% | 28% | 1 | | | | | | 16.782721 | 100% | 28% | 2 | na | na | na | | | 16.782721 | 100% | 28% | 3 | na | na | na | | | 42.898246 | 0% | 70% | 4 | na | na | na | | | 52.907928 | 0% | 80% | | | | | | | 74.125859 | 0% | 90% | | | | | | 24 hours | 6.5431504 | 71% | 11% | 1 | | | | | | 2.4162018 | 86% | 8% | 2 | 0.0 | 0.0 | na | | | 0 | 100% | 0% | 3 | 2.0 | 0.1 | 40.4 | | | 42.898246 | 14% | 70% | 4 | 4.2 | 0.3 | 51.7 | | | 52.907928 | 14% | 80% | | | | | | | 74.125859 | 0% | 90% | | | | | | 48 hours | 0 | 100% | 0% | 1 | | | | | | 0 | 100% | 0% | 2 | 1.0 | 0.0 | 53.1 | | | 0 | 100% | 0% | 3 | 1.0 | 0.0 | 53.1 | | | 42.898246 | 20% | 70% | 4 | 2.0 | 0.1 | 40.5 | | | 52.907928 | 20% | 80% | | | | | | | 74.125859 | 20% | 90% | | | | | | | Cutoff | | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|--------------|--| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | 95% CI of OR | | | 0 hours | 18.286402 | 74% | 32% | 1 | | | | | | | 13.217232 | 84% | 21% | 2 | 1.9 | 0.8 | 4.4 | | | | 6.8184348 | 95% | 14% | 3 | 0.5 | 0.1 | 2.3 | | | | 41.97433 | 42% | 70% | 4 | 1.5 | 0.6 | 3.7 | | | | 51.841969 | 32% | 80% | | | | | | | | 73.080875 | 16% | 90% | | | | | | | 24 hours | 11.758032 | 73% | 19% | 1 | | | | | | | 9.4129279 | 81% | 18% | 2 | 0.8 | 0.3 | 2.0 | | | | 1.8746115 | 92% | 10% | 3 | 1.7 | 0.8 | 3.5 | | | | 41.97433 | 23% | 70% | 4 | 2.0 | 1.0 | 3.9 | | | | 51.841969 | 15% | 80% | | | | | | | | 73.080875 | 4% | 90% | | | | | | | 48 hours | 20.314692 | 71% | 38% | 1 | | | | | | | 15.666709 | 86% | 25% | 2 | 1.4 | 0.4 | 4.6 | | | | 13.847063 | 93% | 23% | 3 | 1.0 | 0.3 | 4.0 | | | | 41.97433 | 36% | 70% | 4 | 1.4 | 0.4 | 4.6 | | | | 51.841969 | 29% | 80% | | | | | | | | 73.080875 | 14% | 90% | | | | | | #### Matrix metalloproteinase-2 | - | |
- | |-----|------------|--------| | sCr | αr |
11 | | | | | | | 0 hr prior to A | AKI stage | 24 hr prior to | AKI stage | stage 48 hr prior to AKI stage | | | |------------|-----------------|-----------|----------------|-----------|--------------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 2515.000 | 2640.000 | 2515.000 | 2340.000 | 2515.000 | 2540.000 | | | average | 2612.539 | 2935.000 | 2612.539 | 2711.694 | 2612.539 | 2774.444 | | | stdev | 922.086 | 1107.993 | 922.086 | 1126.460 | 922.086 | 943.025 | | | p (t-test) | | 0.077 | | 0.543 | | 0.466 | | | min | 618.000 | 1610.000 | 618.000 | 1330.000 | 618.000 | 1440.000 | | | max | 5710.000 | 5870.000 | 5710.000 | 5621.000 | 5710.000 | 4820.000 | | | n (Samp) | 434 | 28 | 434 | 36 | 434 | 18 | | | n (Pat) | 173 | 28 | 173 | 36 | 173 | 18 | | sCr only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|----------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 2470.000 | 3045.000 | 2470.000 | 2990.000 | 2470.000 | 3530.000 | | average | 2615.170 | 3256.667 | 2615.170 | 3126.100 | 2615.170 | 3432.857 | | stdev | 943.514 | 1581.463 | 943.514 | 1398.175 | 943.514 | 1051.043 | | p (t-test) | | 0.101 | | 0.093 | | 0.023 | | min | 618.000 | 1740.000 | 618.000 | 1350.000 | 618.000 | 2280.000 | | max | 6370.000 | 5870.000 | 6370.000 | 5621.000 | 6370.000 | 5130.000 | | n (Samp) | 542 | 6 | 542 | 10 | 542 | 7 | | n (Pat) | 208 | 6 | 208 | 10 | 208 | 7 | UO only | | 0 hr prior toA | KI stage | 24 hr prior to/ | AKI stage | 48 hr prior to | toAKI stage | | |------------|----------------|----------|-----------------|-----------|----------------|-------------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 2570.000 | 2650.000 | 2570.000 | 2300.000 | 2570.000 | 2215.000 | | | average | 2648.292 | 3062.593 | 2648.292 | 2668.750 | 2648.292 | 2575.625 | | | stdev | 943.214 | 1252.111 | 943.214 | 1106.974 | 943.214 | 932.280 | | | p (t-test) | | 0.033 | | 0.908 | | 0.763 | | | min | 618.000 | 1610.000 | 618.000 | 1330.000 | 618.000 | 1440.000 | | | max | 5710.000 | 7300.000 | 5710.000 | 5870.000 | 5710.000 | 4820.000 | | | n (Samp) | 356 | 27 | 356 | 32 | 356 | 16 | | | n (Pat) | 138 | 27 | 138 | 32 | 138 | 16 | | sCr or UO | Time prior | ΛUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------
-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.57 | 0.058 | 434 | 28 | 0.217 | | 24 hours | 0.50 | 0.050 | 434 | 36 | 0.942 | | 48 hours | 0.54 | 0.071 | 434 | 18 | 0.582 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.61 | 0.123 | 542 | 6 | 0.369 | | 24 hours | 0.61 | 0.096 | 542 | 10 | 0.238 | | 48 hours | 0.73 | 0.109 | 542 | 7 | 0.036 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.59 | 0.059 | 356 | 27 | 0.149 | | 24 hours | 0.47 | 0.052 | 356 | 32 | 0.593 | | 48 hours | 0.45 | 0.071 | 356 | 16 | 0.494 | | | - 22 | | | | | | | |----------------------|--------|------|------|----------|-----|-------|---------| | | Cutoff | | | | | | | | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 2250 | 71% | 38% | 1 | | | | | | 2080 | 82% | 31% | 2 | 1.6 | 0.8 | 3.2 | | | 1650 | 93% | 13% | 3 | 1.2 | 0.6 | 2.6 | | | 3010 | 36% | 70% | 4 | 1.9 | 1.0 | 3.5 | | | 3280 | 32% | 80% | | | | | | | 3750 | 29% | 90% | | | | | | 24 hours | 1950 | 72% | 25% | 1 | 1 | | | |----------|------|-----|-----|---|-----|-----|-----| | | 1800 | 81% | 20% | 2 | 0.3 | 0.1 | 0.6 | | | 1480 | 92% | 9% | 3 | 1.2 | 0.8 | 1.7 | | | 3010 | 31% | 70% | 4 | 0.8 | 0.5 | 1.2 | | | 3280 | 31% | 80% | | | | | | | 3750 | 17% | 90% | | | | | | 48 hours | 2160 | 72% | 34% | 1 | | | | | | 2010 | 83% | 28% | 2 | 2.1 | 0.7 | 5.7 | | | 1810 | 94% | 20% | 3 | 1.3 | 0.4 | 4.4 | | | 3010 | 28% | 70% | 4 | 1.7 | 0.6 | 5.0 | | | 3280 | 28% | 80% | | | | | | | 3750 | 17% | 90% | | | | | sCr only | only | | | | | | | | |----------------------|-----------------|------|------|----------|-----|-------|---------| | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 1760 | 83% | 18% | 1 | | | | | | 1760 | 83% | 18% | 2 | 0.0 | 0.0 | na | | | 1730 | 100% | 17% | 3 | 0.5 | 0.0 | 9.7 | | | 2970 | 50% | 70% | 4 | 1.5 | 0.3 | 8.0 | | | 3280 | 50% | 80% | | | | | | | 3830 | 33% | 90% | | | | | | 24 hours | 2460 | 70% | 50% | 1 | | | | | | 2300 | 80% | 42% | 2 | 1.0 | 0.1 | 7.3 | | | 1350 | 90% | 6% | 3 | 1.0 | 0.1 | 7.3 | | | 2970 | 50% | 70% | 4 | 2.0 | 0.5 | 9.1 | | | 3280 | 40% | 80% | | | | | | | 3830 | 20% | 90% | | | | | | 48 hours | 2760 | 71% | 61% | 1 | | | | | | 2300 | 86% | 42% | 2 | na | na | na | | | 2260 | 100% | 40% | 3 | na | na | na | | | 2970 | 57% | 70% | 4 | na | па | па | | | 3280 | 57% | 80% | | | | | | | 3830 | 43% | 90% | | | | | | - | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 2310 | 74% | 40% | 1 | | | | | | 2200 | 81% | 34% | 2 | 3.2 | 1.3 | 7.9 | | | 1650 | 93% | 14% | 3 | 2.0 | 0.7 | 5.7 | | | 3050 | 37% | 71% | 4 | 3.2 | 1.3 | 7.9 | | | 3320 | 33% | 80% | | | | | | | 3840 | 22% | 90% | | | | | | 24 hours | 1950 | 72% | 22% | 1 | | | | | | 1800 | 81% | 19% | 2 | 0.3 | 0.1 | 0.8 | | | 1490 | 91% | 10% | 3 | 1.1 | 0.7 | 1.8 | | | 3050 | 31% | 71% | 4 | 1.1 | 0.7 | 1.8 | | | 3320 | 28% | 80% | | | | | | | 3840 | 16% | 90% | | | | | | 48 hours | 2010 | 75% | 25% | 1 | | | | | | 1930 | 81% | 22% | 2 | 1.0 | 0.3 | 3.9 | | | 1730 | 94% | 17% | 3 | 2.1 | 0.7 | 5.8 | | | 3050 | 19% | 71% | 4 | 1.3 | 0.4 | 4.4 | | | 3320 | 19% | 80% | | | | | | | 3840 | 13% | 90% | 1 | | | | ## Serum amyloid P-component sCr or UO $\,$ | | 0 hr prior to A | AKI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|-----------------|-----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 5009.291 | 5666.298 | 5009.291 | 4768.194 | 5009.291 | 5020.099 | | average | 5491.353 | 5692.800 | 5491.353 | 5252.102 | 5491.353 | 5150.099 | | stdev | 2562.610 | 1959.462 | 2562.610 | 3108.044 | 2562.610 | 2101.379 | | p (t-test) | | 0.738 | | 0.649 | | 0.603 | | min | 96.224 | 2111.440 | 96.224 | 915.589 | 96.224 | 2116.488 | | max | 16315.493 | 9440.651 | 16315.493 | 16576.982 | 16315.493 | 9029.353 | | n (Samp) | 230 | 19 | 230 | 28 | 230 | 16 | | n (Pat) | 158 | 19 | 158 | 28 | 158 | 16 | sCr only | | 0 hr prior toA | .KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|-----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 5008.293 | 3974.530 | 5008.293 | 5878.713 | 5008.293 | 5316.421 | | average | 5467.355 | 3974.530 | 5467.355 | 6043.664 | 5467.355 | 5836.461 | | stdev | 2601.621 | 529.617 | 2601.621 | 2681.917 | 2601.621 | 1562.309 | | p (t-test) | | 0.419 | | 0.563 | | 0.752 | | min | 96.224 | 3600.034 | 96.224 | 1775.429 | 96.224 | 3970.792 | | max | 16576.982 | 4349.026 | 16576.982 | 10815.095 | 16576.982 | 7618.702 | | n (Samp) | 295 | 2 | 295 | 7 | 295 | 5 | | n (Pat) | 187 | 2 | 187 | 7 | 187 | 5 | UO only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 5093.263 | 5666.298 | 5093.263 | 4667.156 | 5093.263 | 4287.587 | | average | 5457.133 | 5735.132 | 5457.133 | 5344.247 | 5457.133 | 4916.368 | | stdev | 2341.787 | 1920.012 | 2341.787 | 3189.378 | 2341.787 | 2147.724 | | p (t-test) | | 0.617 | | 0.826 | | 0.402 | | min | 1161.809 | 2111.440 | 1161.809 | 915.589 | 1161.809 | 2116.488 | | max | 16315.493 | 9440.651 | 16315.493 | 16576.982 | 16315.493 | 9029.353 | | n (Samp) | 198 | 19 | 198 | 26 | 198 | 14 | | n (Pat) | 132 | 19 | 132 | 26 | 132 | 14 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.56 | 0.071 | 230 | 19 | 0.410 | | 24 hours | 0.46 | 0.056 | 230 | 28 | 0.471 | | 48 hours | 0.48 | 0.074 | 230 | 16 | 0.764 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.28 | 0.150 | 295 | 2 | 0.146 | | 24 hours | 0.60 | 0.115 | 295 | 7 | 0.367 | | 48 hours | 0.59 | 0.135 | 295 | 5 | 0.500 | UO only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |----------------------|------|-------|-----------|-----------|-------| | AKI stage
0 hours | 0.56 | 0.071 | 198 | 19 | 0.366 | | 24 hours | 0.45 | 0.059 | 198 | 26 | 0.422 | | 48 hours | 0.43 | 0.076 | 198 | 14 | 0.376 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | |----------------------|-----------------|------|------|----------|-----|-------|---------| | 0 hours | 4336.5188 | 74% | 36% | 1 | | | | | | 3644.9233 | 84% | 19% | 2 | 0.6 | 0.2 | 1.8 | | | 3161.183 | 95% | 14% | 3 | 0.6 | 0.2 | 1.8 | | | 6163.242 | 42% | 70% | 4 | 1.7 | 0.8 | 3.4 | | | 6919.0319 | 42% | 80% | | | | | | | 8435.3903 | 5% | 90% | | | | | | 24 hours | 3956.1005 | 71% | 27% | 1 | I | | I | |----------|-----------|-----|-----|---|-----|-----|-----| | | 2777.9862 | 82% | 9% | 2 | 1.0 | 0.5 | 2.1 | | | 1819.2755 | 93% | 3% | 3 | 1.4 | 0.7 | 2.6 | | | 6163.242 | 25% | 70% | 4 | 1.4 | 0.7 | 2.7 | | | 6919.0319 | 21% | 80% | | | | | | | 8435.3903 | 11% | 90% | | | | | | 48 hours | 3766.3572 | 75% | 21% | 1 | | | | | | 3558.3957 | 81% | 18% | 2 | 0.6 | 0.2 | 1.8 | | | 2300.6963 | 94% | 5% | 3 | 0.6 | 0.2 | 1.8 | | | 6163.242 | 38% | 70% | 4 | 1.0 | 0.4 | 2.4 | | | 6919.0319 | 31% | 80% | | | | | | | 8435.3903 | 6% | 90% | | | | | sCr only | CI OHLY | | | | | | | | |----------------------|-----------------|------|------|----------|-----|--------------|------| | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% CI of OF | | | 0 hours | 3570.863 | 100% | 20% | 1 | | | | | | 3570.863 | 100% | 20% | 2 | na | na | na | | | 3570.863 | 100% | 20% | 3 | na | na | na | | | 6211.9302 | 0% | 70% | 4 | na | na | па | | | 7205.7873 | 0% | 80% | | | | | | | 8594.5677 | 0% | 90% | | | | | | 24 hours | 5373.5983 | 71% | 57% | 1 | | | | | | 5324.4963 | 86% | 55% | 2 | 0.0 | 0.0 | na | | | 1726.9163 | 100% | 2% | 3 | 4.2 | 0.3 | 51.0 | | | 6211.9302 | 29% | 70% | 4 | 2.0 | 0.1 | 39.9 | | | 7205.7873 | 14% | 80% | | | | | | | 8594.5677 | 14% | 90% | | | | | | 48 hours | 4979.4707 | 80% | 49% | 1 | | | | | | 4979.4707 | 80% | 49% | 2 | na | na | na | | | 3956.1005 | 100% | 27% | 3 | na | na | na | | | 6211.9302 | 40% | 70% | 4 | na | na | na | | | 7205.7873 | 40% | 80% | | | | | | | 8594.5677 | 0% | 90% | | | | | | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | T of OR | | 0 hours | 4378.7135 | 74% | 35% | 1 | | | | | | 3877.5439 | 84% | 21% | 2 | 1.0 | 0.3 | 2.9 | | | 3161.183 | 95% | 14% | 3 | 0.7 | 0.2 | 2.5 | | | 6157.9343 | 42% | 70% | 4 | 2.1 | 0.9 | 4.8 | | | 6895.0273 | 42% | 80% | | | | | | | 8250.4495 | 5% | 90% | | | | | | 24 hours | 3675.773 | 73% | 17% | 1 | | | | | | 2984.665 | 81% | 12% | 2 | 0.4 | 0.1 | 1.1 | | | 1891.309 | 92% | 4% | 3 | 1.2 | 0.6 | 2.1 | | | 6157.9343 | 31% | 70% | 4 | 1.2 | 0.6 | 2.1 | | | 6895.0273 | 27% | 80% | | | | | | | 8250.4495 | 15% | 90% | | | | | | 48 hours | 3766.3572 | 71% | 18% | 1 | | | | | | 2425.2241 | 86% | 6% | 2 | 0.5 | 0.1 | 2.3 | | | 2300.6963 | 93% | 5% | 3 | 0.7 | 0.2 | 2.5 | | | 6157.9343 | 36% | 70% | 4 | 1.3 | 0.5 | 3.3 | | | 6895.0273 | 29% | 80% | | | | | | | 8250.4495 | 7% | 90% | | | | | # Matrix metalloproteinase-9 | eCr. | or | T | ~ | |------|----|---|---| | | 0 hr prior to A | AKI stage | 24 hr
prior to | AKI stage | 48 hr prior to AKI stage | | | |------------|-----------------|-----------|-------------------|-----------|--------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 Cohort 2 | | Cohort 1 | Cohort 2 | | | median | 280.000 | 408.500 | 280.000 | 428.500 | 280.000 | 397.000 | | | average | 485.877 | 792.929 | 485.877 | 490.119 | 485.877 | 655.789 | | | stdev | 805.767 | 1466.404 | 805.767 | 402.427 | 805.767 | 1078.232 | | | p (t-test) | | 0.067 | | 0.975 | | 0.388 | | | min | 20.000 | 39.900 | 20.000 | 69.800 | 20.000 | 36.200 | | | max | 8903.000 | 7705.000 | 8903.000 | 2020.000 | 8903.000 | 4830.000 | | | n (Samp) | 434 | 28 | 434 | 36 | 434 | 18 | | | n (Pat) | 173 | 28 | 173 | 36 | 173 | 18 | | sCr only | • | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|----------------|----------|---------------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 Cohort 2 C | | Cohort 1 | Cohort 2 | | | median | 300.500 | 540.500 | 300.500 | 502.500 | 300.500 | 676.000 | | | average | 510.765 | 1938.333 | 510.765 | 598.000 | 510.765 | 663.000 | | | stdev | 782.318 | 2911.673 | 782.318 | 447.251 | 782.318 | 230.372 | | | p (t-test) | | 0.000 | | 0.725 | | 0.607 | | | min | 20.000 | 307.000 | 20.000 | 161.000 | 20.000 | 335.000 | | | max | 8903.000 | 7705.000 | 8903.000 | 1540.000 | 8903.000 | 1020.000 | | | n (Samp) | 542 | 6 | 542 | 10 | 542 | 7 | | | n (Pat) | 208 | 6 | 208 | 10 | 208 | 7 | | UO only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|----------------|----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 272.000 | 435.000 | 272.000 | 378.000 | 272.000 | 330.000 | | | average | 433.651 | 817.963 | 433.651 | 510.603 | 433.651 | 1075.825 | | | stdev | 599.233 | 1489.393 | 599.233 | 491.118 | 599.233 | 2104.250 | | | p (t-test) | | 0.006 | | 0.481 | | 0.001 | | | min | 20.000 | 39.900 | 20.000 | 69.800 | 20.000 | 36.200 | | | max | 7705.000 | 7705.000 | 7705.000 | 2240.000 | 7705.000 | 7705.000 | | | n (Samp) | 356 | 27 | 356 | 32 | 356 | 16 | | | n (Pat) | 138 | 27 | 138 | 32 | 138 | 16 | | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.60 | 0.058 | 434 | 28 | 0.080 | | 24 hours | 0.59 | 0.052 | 434 | 36 | 0.081 | | 48 hours | 0.57 | 0.072 | 434 | 18 | 0.299 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | P | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.75 | 0.116 | 542 | 6 | 0.031 | | 24 hours | 0.65 | 0.095 | 542 | 10 | 0.124 | | 48 hours | 0.76 | 0.107 | 542 | 7 | 0.017 | UO only | Time prior
AKI stage | ΛUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.62 | 0.059 | 356 | 27 | 0.041 | | 24 hours | 0.59 | 0.055 | 356 | 32 | 0.095 | | 48 hours | 0.56 | 0.076 | 356 | 16 | 0.408 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | |----------------------|-----------------|------|------|----------|-----|-------|---------| | 0 hours | 306 | 71% | 55% | 1 | | | | | | 158 | 82% | 30% | 2 | 1.0 | 0.4 | 2.7 | | | 52 | 93% | 4% | 3 | 2.4 | 1.1 | 5.0 | | | 461 | 39% | 70% | 4 | 2.9 | 1.4 | 5.9 | | | 647 | 25% | 80% | | | | | | | 1020 | 11% | 90% | | | | | | 24 hours | 244 | 75% | 45% | 1 1 | I | | | |----------|------|-----|-----|-----|-----|-----|-----| | | 194 | 81% | 38% | 2 | 1.3 | 0.7 | 2.5 | | | 98.6 | 92% | 15% | 3 | 1.9 | 1.1 | 3.3 | | | 461 | 44% | 70% | 4 | 1.9 | 1.1 | 3.3 | | | 647 | 25% | 80% | | | | | | | 1020 | 6% | 90% | | | | | | 48 hours | 206 | 72% | 39% | 1 | | | | | | 173 | 83% | 32% | 2 | 1.3 | 0.4 | 4.4 | | | 120 | 94% | 19% | 3 | 1.7 | 0.6 | 5.0 | | | 461 | 39% | 70% | 4 | 2.1 | 0.7 | 5.7 | | | 647 | 28% | 80% | | | | | | | 1020 | 6% | 90% | | | | | | | Cutoff | | | | | 95% (| T of | |----------------------|--------|------|------|----------|-----|-------|------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 317 | 70% | 57% | 1 | | | | | | 156 | 81% | 29% | 2 | 1.0 | 0.4 | 2.8 | | | 52 | 93% | 4% | 3 | 1.8 | 0.8 | 4.0 | | | 424 | 52% | 70% | 4 | 3.3 | 1.6 | 6.5 | | | 582 | 33% | 80% | | | | | | | 906 | 11% | 90% | | | | | | 24 hours | 247 | 72% | 46% | 1 | | | | | | 194 | 81% | 38% | 2 | 1.2 | 0.6 | 2.3 | | | 98.6 | 91% | 14% | 3 | 1.4 | 0.7 | 2.5 | | | 424 | 44% | 70% | 4 | 1.9 | 1.1 | 3.4 | | | 582 | 25% | 80% | | | | | | | 906 | 6% | 90% | | | | | | 48 hours | 194 | 75% | 38% | 1 | | | | | | 173 | 81% | 32% | 2 | 1.3 | 0.4 | 4.4 | | | 120 | 94% | 18% | 3 | 1.3 | 0.4 | 4.4 | | | 424 | 44% | 70% | 4 | 1.7 | 0.6 | 5.1 | | | 582 | 25% | 80% | | | | | | | 906 | 13% | 90% | | | | | ## FIGURE 7 Clusterin sCr or UO | | 0 hr prior to AKI stage | | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | |------------|-------------------------|------------|----------------|------------|--------------------------|------------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 108848.034 | 84699.814 | 108848.034 | 84699.814 | 108848.034 | 84699.814 | | average | 106505.593 | 83381.434 | 106505.593 | 83381.434 | 106505.593 | 83381.434 | | stdev | 39394.888 | 51247.025 | 39394.888 | 51247.025 | 39394.888 | 51247.025 | | p (t-test) | | 0.056 | | 0.056 | | 0.056 | | min | 31439.276 | 369.562 | 31439.276 | 369.562 | 31439.276 | 369.562 | | max | 201365.565 | 244623.417 | 201365.565 | 244623.417 | 201365.565 | 244623.417 | | n (Samp) | 52 | 17 | 52 | 17 | 52 | 17 | | n (Pat) | 52 | 17 | 52 | 17 | 52 | 17 | sCr only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|------------------------|------------|----------------|------------|-------------------------|------------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 114689.518 | 90003.239 | 114689.518 | 90003.239 | 114689.518 | 90003.239 | | | average | 111966.570 | 90003.239 | 111966.570 | 90003.239 | 111966.570 | 90003.239 | | | stdev | 38887.769 | 42421.826 | 38887.769 | 42421.826 | 38887.769 | 42421.826 | | | p (t-test) | | 0.459 | | 0.459 | | 0.459 | | | min | 53297.264 | 60006.479 | 53297.264 | 60006.479 | 53297.264 | 60006.479 | | | max | 201365.565 | 120000.000 | 201365.565 | 120000.000 | 201365.565 | 120000.000 | | | n (Samp) | 19 | 2 | 19 | 2 | 19 | 2 | | | n (Pat) | 19 | 2 | 19 | 2 | 19 | 2 | | UO only | | 0 hr prior toAKI stage | | 24 hr prior toAKI stage | | 48 hr prior toAKI stage | | |------------|------------------------|------------|-------------------------|------------|-------------------------|------------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 106794.363 | 69283.724 | 106794.363 | 69283.724 | 106794.363 | 69283.724 | | average | 104013.855 | 79523.052 | 104013.855 | 79523.052 | 104013.855 | 79523.052 | | stdev | 37433.727 | 55357.877 | 37433.727 | 55357.877 | 37433.727 | 55357.877 | | p (t-test) | | 0.068 | | 0.068 | | 0.068 | | min | 31439.276 | 369.562 | 31439.276 | 369.562 | 31439.276 | 369.562 | | max | 197636.915 | 244623.417 | 197636.915 | 244623.417 | 197636.915 | 244623.417 | | n (Samp) | 41 | 14 | 41 | 14 | 41 | 14 | | n (Pat) | 41 | 14 | 41 | 14 | 41 | 14 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.31 | 0.069 | 52 | 17 | 0.007 | | 24 hours | 0.31 | 0.069 | 52 | 17 | 0.007 | | 48 hours | 0.31 | 0.069 | 52 | 17 | 0.007 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.36 | 0.192 | 19 | 2 | 0.451 | | 24 hours | 0.36 | 0.192 | 19 | 2 | 0.451 | | 48 hours | 0.36 | 0.192 | 19 | 2 | 0.451 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.28 | 0.073 | 41 | 14 | 0.003 | | 24 hours | 0.28 | 0.073 | 41 | 14 | 0.003 | | 48 hours | 0.28 | 0.073 | 41 | 14 | 0.003 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% (| H of OR | |----------------------|-----------------|------|------|----------|------|-------|---------| | 0 hours | 58284.001 | 71% | 12% | 1 | | | | | | 54502.153 | 82% | 12% | 2 | 9.3 | 0.7 | 122.4 | | | 369.56176 | 94% | 0% | 3 | 3.6 | 0.2 | 64.2 | | | 120554.14 | 6% | 71% | 4 | 11.9 | 0.9 | 152.6 | | | 137689.21 | 6% | 81% | | | | | | | 156761.93 | 6% | 90% | | | | | | 24 hours | 58284.001 | 71% | 12% | 1 | I | | 1 | |----------|-----------|-----|-----|---|------|-----|-------| | | 54502.153 | 82% | 12% | 2 | 9.3 | 0.7 | 122.4 | | | 369.56176 | 94% | 0% | 3 | 3.6 | 0.2 | 64.2 | | | 120554.14 | 6% | 71% | 4 | 11.9 | 0.9 | 152.6 | | | 137689.21 | 6% | 81% | | | | | | | 156761.93 | 6% | 90% | | | | | | 48 hours | 58284.001 | 71% | 12% | 1 | | | | | | 54502.153 | 82% | 12% | 2 | 9.3 | 0.7 | 122.4 | | | 369.56176 | 94% | 0% | 3 | 3.6 | 0.2 | 64.2 | | | 120554.14 | 6% | 71% | 4 | 11.9 | 0.9 | 152.6 | | | 137689.21 | 6% | 81% | | | | | | 1 | 156761.93 | 6% | 90% | | | | | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% | CI of OR | |----------------------|-----------------|------|------|----------|------|-----|----------| | 0 hours | 58284.001 | 71% | 12% | 1 | | | | | | 47727.274 | 86% | 7% | 2 | 3.5 | 0.2 | 67.2 | | | 369.56176 | 93% | 0% | 3 | 3.5 | 0.2 | 67.2 | | | 120554.14 | 7% | 71% | 4 | 15.2 | 1.0 | 229.6 | | | 127576.59 | 7% | 80% | | | | | | | 143211.86 | 7% | 90% | | | | | | 24 hours | 58284.001 | 71% | 12% | 1 | |
| | | | 47727.274 | 86% | 7% | 2 | 3.5 | 0.2 | 67.2 | | | 369.56176 | 93% | 0% | 3 | 3.5 | 0.2 | 67.2 | | | 120554.14 | 7% | 71% | 4 | 15.2 | 1.0 | 229.6 | | | 127576.59 | 7% | 80% | | | | | | | 143211.86 | 7% | 90% | | | | | | 48 hours | 58284.001 | 71% | 12% | 1 | | | | | | 47727.274 | 86% | 7% | 2 | 3.5 | 0.2 | 67.2 | | | 369.56176 | 93% | 0% | 3 | 3.5 | 0.2 | 67.2 | | | 120554.14 | 7% | 71% | 4 | 15.2 | 1.0 | 229.6 | | | 127576.59 | 7% | 80% | | | | | | | 143211.86 | 7% | 90% | | | | | #### Serum amyloid P-component | ef. | 'n | or | Т | IO | |-----|----|----|---|----| | | 0 hr prior to A | AKI stage | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | | |------------|-----------------|-----------|----------------|-----------|--------------------------|-----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 5025.127 | 4154.461 | 5025.127 | 4154.461 | 5025.127 | 4154.461 | | | average | 5554.467 | 5079.717 | 5554.467 | 5079.717 | 5554.467 | 5079.717 | | | stdev | 2849.319 | 3357.607 | 2849.319 | 3357.607 | 2849.319 | 3357.607 | | | p (t-test) | | 0.570 | | 0.570 | | 0.570 | | | min | 1726.916 | 1867.819 | 1726.916 | 1867.819 | 1726.916 | 1867.819 | | | max | 16242.949 | 16576.982 | 16242.949 | 16576.982 | 16242.949 | 16576.982 | | | n (Samp) | 52 | 17 | 52 | 17 | 52 | 17 | | | n (Pat) | 52 | 17 | 52 | 17 | 52 | 17 | | Oct. 18, 2016 sCr only | | 0 hr prior toA | 0 hr prior toAKI stage | | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|------------------------|-----------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 4745.512 | 7217.428 | 4745.512 | 7217.428 | 4745.512 | 7217.428 | | average | 5378.006 | 7217.428 | 5378.006 | 7217.428 | 5378.006 | 7217.428 | | stdev | 2476.478 | 102.721 | 2476.478 | 102.721 | 2476.478 | 102.721 | | p (t-test) | | 0.318 | | 0.318 | | 0.318 | | min | 2295.394 | 7144.793 | 2295.394 | 7144.793 | 2295.394 | 7144.793 | | max | 11731.227 | 7290.063 | 11731.227 | 7290.063 | 11731.227 | 7290.063 | | n (Samp) | 19 | 2 | 19 | 2 | 19 | 2 | | n (Pat) | 19 | 2 | 19 | 2 | 19 | 2 | UO only | | 0 hr prior toΛ | .KI stage | 24 hr prior to/ | \KI stage | 48 hr prior toΛKI stage | | |------------|----------------|-----------|-----------------|-----------|-------------------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 5041.961 | 4190.305 | 5041.961 | 4190.305 | 5041.961 | 4190.305 | | average | 5753.104 | 5179.572 | 5753.104 | 5179.572 | 5753.104 | 5179.572 | | stdev | 3106.048 | 3569.540 | 3106.048 | 3569.540 | 3106.048 | 3569.540 | | p (t-test) | | 0.568 | | 0.568 | | 0.568 | | min | 1726.916 | 1867.819 | 1726.916 | 1867.819 | 1726.916 | 1867.819 | | max | 16242.949 | 16576.982 | 16242.949 | 16576.982 | 16242.949 | 16576.982 | | n (Samp) | 41 | 14 | 41 | 14 | 41 | 14 | | n (Pat) | 41 | 14 | 41 | 14 | 41 | 14 | sCr or UO | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.40 | 0.077 | 52 | 17 | 0.210 | | 24 hours | 0.40 | 0.077 | 52 | 17 | 0.210 | | 48 hours | 0.40 | 0.077 | 52 | 17 | 0.210 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.79 | 0.200 | 19 | 2 | 0.147 | | 24 hours | 0.79 | 0.200 | 19 | 2 | 0.147 | | 48 hours | 0.79 | 0.200 | 19 | 2 | 0.147 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.39 | 0.085 | 41 | 14 | 0.209 | | 24 hours | 0.39 | 0.085 | 41 | 14 | 0.209 | | 48 hours | 0.39 | 0.085 | 41 | 14 | 0.209 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | |----------------------|-----------------|------|------|----------|-----|-------|---------| | 0 hours | 3570.863 | 71% | 17% | 1 | | | | | | 2815.0629 | 82% | 13% | 2 | 1.5 | 0.4 | 6.4 | | | 1891.309 | 94% | 6% | 3 | 1.5 | 0.4 | 6.4 | | | 6076.4492 | 18% | 71% | 4 | 2.7 | 0.8 | 9.9 | | | 7262.678 | 18% | 81% | | | | | | | 8399.8565 | 6% | 90% | | | | | | 24 hours | I 3570.863 | 71% | 17% | I 1 | ı | | | |----------|------------|------|------|-----|-----|-----|-----| | 24 Hours | 3370.803 | /170 | 1770 | 1 | | | | | | 2815.0629 | 82% | 13% | 2 | 1.5 | 0.4 | 6.4 | | | 1891.309 | 94% | 6% | 3 | 1.5 | 0.4 | 6.4 | | | 6076.4492 | 18% | 71% | 4 | 2.7 | 0.8 | 9.9 | | | 7262.678 | 18% | 81% | | | | | | | 8399.8565 | 6% | 90% | | | | | | 48 hours | 3570.863 | 71% | 17% | 1 | | | | | | 2815.0629 | 82% | 13% | 2 | 1.5 | 0.4 | 6.4 | | | 1891.309 | 94% | 6% | 3 | 1.5 | 0.4 | 6.4 | | | 6076.4492 | 18% | 71% | 4 | 2.7 | 0.8 | 9.9 | | | 7262.678 | 18% | 81% | | | | | | | 8399.8565 | 6% | 90% | | | | | | • | Cutoff | | | | | 95% (| CI of | |----------------------|-----------|------|------|----------|-----|-------|-------| | Time prior AKI stage | value | sens | spec | Quartile | OR | OR | | | 0 hours | 3600.0341 | 71% | 15% | 1 | | | | | | 2815.0629 | 86% | 15% | 2 | 1.6 | 0.2 | 11.8 | | | 2591.9192 | 93% | 15% | 3 | 2.4 | 0.4 | 15.0 | | | 6424.9768 | 14% | 71% | 4 | 3.8 | 0.6 | 22.2 | | | 7645.7332 | 7% | 80% | | | | | | | 8399.8565 | 7% | 90% | | | | | | 24 hours | 3600.0341 | 71% | 15% | 1 | | | | | | 2815.0629 | 86% | 15% | 2 | 1.6 | 0.2 | 11.8 | | | 2591.9192 | 93% | 15% | 3 | 2.4 | 0.4 | 15.0 | | | 6424.9768 | 14% | 71% | 4 | 3.8 | 0.6 | 22.2 | | | 7645.7332 | 7% | 80% | | | | | | | 8399.8565 | 7% | 90% | | | | | | 48 hours | 3600.0341 | 71% | 15% | 1 | | | | | | 2815.0629 | 86% | 15% | 2 | 1.6 | 0.2 | 11.8 | | | 2591.9192 | 93% | 15% | 3 | 2.4 | 0.4 | 15.0 | | | 6424.9768 | 14% | 71% | 4 | 3.8 | 0.6 | 22.2 | | | 7645.7332 | 7% | 80% | | | | | | | 8399.8565 | 7% | 90% | | · · | | | ## Matrix metalloproteinase-9 sCr or UO | | 0 hr prior to A | KI stage | 24 hr prior to . | AKI stage | 48 hr prior to | 48 hr prior to AKI stage | | |------------|-----------------|----------|------------------|-----------|----------------|--------------------------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 252.000 | 532.000 | 252.000 | 532.000 | 252.000 | 532.000 | | | average | 404.304 | 627.205 | 404.304 | 627.205 | 404.304 | 627.205 | | | stdev | 437.057 | 494.325 | 437.057 | 494.325 | 437.057 | 494.325 | | | p (t-test) | | 0.058 | | 0.058 | | 0.058 | | | min | 26.300 | 36.200 | 26.300 | 36.200 | 26.300 | 36.200 | | | max | 2320.000 | 2020.000 | 2320.000 | 2020.000 | 2320.000 | 2020.000 | | | n (Samp) | 56 | 21 | 56 | 21 | 56 | 21 | | | n (Pat) | 56 | 21 | 56 | 21 | 56 | 21 | | sCr only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|----------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 216.000 | 545.000 | 216.000 | 545.000 | 216.000 | 545.000 | | average | 263.900 | 459.600 | 263.900 | 459.600 | 263.900 | 459.600 | | stdev | 152.928 | 235.652 | 152.928 | 235.652 | 152.928 | 235.652 | | p (t-test) | | 0.029 | | 0.029 | | 0.029 | | min | 26.300 | 119.000 | 26.300 | 119.000 | 26.300 | 119.000 | | max | 619.000 | 663.000 | 619.000 | 663.000 | 619.000 | 663.000 | | n (Samp) | 21 | 5 | 21 | 5 | 21 | 5 | | n (Pat) | 21 | 5 | 21 | 5 | 21 | 5 | UO only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|----------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 284.500 | 532.000 | 284.500 | 532.000 | 284.500 | 532.000 | | average | 458.241 | 660.135 | 458.241 | 660.135 | 458.241 | 660.135 | | stdev | 469.494 | 537.946 | 469.494 | 537.946 | 469.494 | 537.946 | | p (t-test) | | 0.150 | | 0.150 | | 0.150 | | min | 29.500 | 36.200 | 29.500 | 36.200 | 29.500 | 36.200 | | max | 2320.000 | 2020.000 | 2320.000 | 2020.000 | 2320.000 | 2020.000 | | n (Samp) | 46 | 17 | 46 | 17 | 46 | 17 | | n (Pat) | 46 | 17 | 46 | 17 | 46 | 17 | sCr or UO | Time prior AKI stage | AUC | SII | nCohort 1 | nCohort 2 | p | |----------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.67 | 0.073 | 56 | 21 | 0.018 | | 24 hours | 0.67 | 0.073 | 56 | 21 | 0.018 | | 48 hours | 0.67 | 0.073 | 56 | 21 | 0.018 | sCr only | Time prior
AKI stage | ΛUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.74 | 0.137 | 21 | 5 | 0.077 | | 24 hours | 0.74 | 0.137 | 21 | 5 | 0.077 | | 48 hours | 0.74 | 0.137 | 21 | 5 | 0.077 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.63 | 0.082 | 46 | 17 | 0.102 | | 24 hours | 0.63 | 0.082 | 46 | 17 | 0.102 | | 48 hours | 0.63 | 0.082 | 46 | 17 | 0.102 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | T of OR | |----------------------|-----------------|------|------|----------|-----|-------|---------| | 0 hours | 304 | 71% | 66% | 1 | | | | | | 213 | 81% | 45% | 2 | 1.0 | 0.2 | 4.7 | | | 94.6 | 90% | 16% | 3 | 2.5 | 0.7 | 8.6 | | | 416 | 67% | 71% | 4 | 4.4 | 1.4 | 14.1 | | | 664 | 43% | 80% | | | | | | | 1010 | 14% | 91% | | | | | | 24 hours | 304 | 71% | 66% | 1 | 1 | | | |----------|------|-----|-----|---|-----|-----|------| | | 213 | 81% | 45% | 2 | 1.0 | 0.2 | 4.7 | | | 94.6 | 90% | 16% | 3 | 2.5 | 0.7 | 8.6 | | | 416 | 67% | 71% | 4 | 4.4 | 1.4 | 14.1 | | | 664 | 43% | 80% | | | | | | | 1010 | 14% | 91% | | | | | | 48 hours | 304 | 71% | 66% | 1 | | | | | | 213 | 81% | 45% | 2 | 1.0 | 0.2 | 4.7 | | | 94.6 | 90% | 16% | 3 | 2.5 | 0.7 | 8.6 | | | 416 | 67% | 71%
 4 | 4.4 | 1.4 | 14.1 | | | 664 | 43% | 80% | | | | | | | 1010 | 14% | 91% | | | | | sCr only | | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 303 | 80% | 67% | 1 | | | | | | 303 | 80% | 67% | 2 | 0.0 | 0.0 | na | | | 107 | 100% | 14% | 3 | 1.0 | 0.0 | 110.4 | | | 322 | 60% | 71% | 4 | 3.8 | 0.1 | 123.6 | | | 336 | 60% | 81% | | | | | | | 420 | 60% | 90% | | | | | | 24 hours | 303 | 80% | 67% | 1 | | | | | | 303 | 80% | 67% | 2 | 0.0 | 0.0 | na | | | 107 | 100% | 14% | 3 | 1.0 | 0.0 | 110.4 | | | 322 | 60% | 71% | 4 | 3.8 | 0.1 | 123.6 | | | 336 | 60% | 81% | | | | | | | 420 | 60% | 90% | | | | | | 48 hours | 303 | 80% | 67% | 1 | | | | | | 303 | 80% | 67% | 2 | 0.0 | 0.0 | na | | | 107 | 100% | 14% | 3 | 1.0 | 0.0 | 110.4 | | | 322 | 60% | 71% | 4 | 3.8 | 0.1 | 123.6 | | | 336 | 60% | 81% | | | | | | | 420 | 60% | 90% | | | | | | | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 324 | 71% | 63% | 1 | | | | | | 167 | 82% | 33% | 2 | 0.6 | 0.1 | 4.0 | | | 85.5 | 94% | 11% | 3 | 1.8 | 0.5 | 7.3 | | | 647 | 47% | 72% | 4 | 3.1 | 0.8 | 11.6 | | | 720 | 47% | 80% | | | | | | | 1270 | 12% | 91% | | | | | | 24 hours | 324 | 71% | 63% | 1 | | | | | | 167 | 82% | 33% | 2 | 0.6 | 0.1 | 4.0 | | | 85.5 | 94% | 11% | 3 | 1.8 | 0.5 | 7.3 | | | 647 | 47% | 72% | 4 | 3.1 | 0.8 | 11.6 | | | 720 | 47% | 80% | | | | | | | 1270 | 12% | 91% | | | | | | 48 hours | 324 | 71% | 63% | 1 | | | | | | 167 | 82% | 33% | 2 | 0.6 | 0.1 | 4.0 | | | 85.5 | 94% | 11% | 3 | 1.8 | 0.5 | 7.3 | | | 647 | 47% | 72% | 4 | 3.1 | 0.8 | 11.6 | | | 720 | 47% | 80% | | | | | | | 1270 | 12% | 91% | | | | | FIGURE 8 Fatty acid binding protein, heart | _ | | T -0 | |-----|----|-------------| | sCr | or | LΟ | | ber or e e | | | | | | | |------------|-----------------|-------------------------|----------|-----------|--------------------------|----------| | | 0 hr prior to A | 0 hr prior to AKI stage | | AKI stage | 48 hr prior to AKI stage | | | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 11.450 | 157.000 | 11.450 | 146.000 | 11.450 | 147.000 | | average | 43.685 | 408.925 | 43.685 | 337.735 | 43.685 | 209.933 | | stdev | 102.008 | 479.936 | 102.008 | 472.555 | 102.008 | 250.366 | | p (t-test) | | 0.000 | | 0.000 | | 0.000 | | min | 0.030 | 1.930 | 0.030 | 1.930 | 0.030 | 1.930 | | max | 713.000 | 1477.000 | 713.000 | 1477.000 | 713.000 | 809.000 | | n (Samp) | 112 | 17 | 112 | 17 | 112 | 10 | | n (Pat) | 112 | 17 | 112 | 17 | 112 | 10 | sCr only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | KI stage 48 hr prior to AKI stage | | | |------------|------------------------|----------|----------------|-----------|-----------------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 13.550 | 477.500 | 13.550 | 477.500 | 13.550 | 146.000 | | | average | 65.916 | 590.541 | 65.916 | 580.674 | 65.916 | 300.926 | | | stdev | 152.960 | 600.838 | 152.960 | 610.933 | 152.960 | 333.377 | | | p (t-test) | | 0.000 | | 0.000 | | 0.001 | | | min | 0.030 | 1.930 | 0.030 | 1.930 | 0.030 | 1.930 | | | max | 944.000 | 1477.000 | 944.000 | 1477.000 | 944.000 | 809.000 | | | n (Samp) | 180 | 8 | 180 | 8 | 180 | 5 | | | n (Pat) | 180 | 8 | 180 | 8 | 180 | 5 | | UO only | | 0 hr prior toA | 0 hr prior toAKI stage | | AKI stage | 48 hr prior toAKI stage | | | |------------|----------------|------------------------|----------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 12.600 | 204.000 | 12.600 | 157.000 | 12.600 | 148.000 | | | average | 43.377 | 360.582 | 43.377 | 257.736 | 43.377 | 212.629 | | | stdev | 90.955 | 360.607 | 90.955 | 314.733 | 90.955 | 274.682 | | | p (t-test) | | 0.000 | | 0.000 | | 0.000 | | | min | 0.030 | 24.700 | 0.030 | 24.700 | 0.030 | 24.700 | | | max | 713.000 | 944.000 | 713.000 | 944.000 | 713.000 | 809.000 | | | n (Samp) | 89 | 11 | 89 | 11 | 89 | 7 | | | n (Pat) | 89 | 11 | 89 | 11 | 89 | 7 | | sCr or UO | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.86 | 0.059 | 112 | 17 | 0.000 | | 24 hours | 0.81 | 0.066 | 112 | 17 | 0.000 | | 48 hours | 0.81 | 0.084 | 112 | 10 | 0.000 | sCr only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.79 | 0.096 | 180 | 8 | 0.002 | | 24 hours | 0.72 | 0.104 | 180 | 8 | 0.037 | | 48 hours | 0.76 | 0.127 | 180 | 5 | 0.043 | UO only | Time prior | ΛUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.90 | 0.062 | 89 | 11 | 0.000 | | 24 hours | 0.88 | 0.067 | 89 | 11 | 0.000 | | 48 hours | 0.86 | 0.091 | 89 | 7 | 0.000 | | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% | CI of OR | |----------------------|-----------------|------|------|----------|------|-----|----------| | 0 hours | 77.7 | 71% | 88% | 1 | | | | | | 34.9 | 82% | 75% | 2 | 0.0 | 0.0 | na | | | 17.8 | 94% | 60% | 3 | 3.2 | 0.2 | 49.9 | | | 31.2 | 82% | 71% | 4 | 20.2 | 2.1 | 195.4 | | | 53.5 | 76% | 80% | | | | | | | 94.1 | 65% | 90% | 1 | I | | | |----------|------|-----|-----|---|------|-----|-------| | 24 hours | 53.5 | 71% | 80% | 1 | | | | | | 24.4 | 82% | 67% | 2 | 1.0 | 0.0 | 57.2 | | | 4.31 | 94% | 29% | 3 | 4.4 | 0.3 | 58.6 | | | 31.2 | 76% | 71% | 4 | 15.5 | 1.6 | 153.1 | | | 53.5 | 71% | 80% | | | | | | | 94.1 | 59% | 90% | | | | | | 48 hours | 53.5 | 70% | 80% | 1 | | | | | | 34.9 | 80% | 75% | 2 | 0.0 | 0.0 | na | | | 24.4 | 90% | 67% | 3 | 2.1 | 0.1 | 45.0 | | | 31.2 | 80% | 71% | 4 | 8.5 | 0.8 | 92.2 | | | 53.5 | 70% | 80% | | | | | | | 94.1 | 60% | 90% | | | | | | зCr | on | v | |-----|----|---| | TO: A IZI | Cutoff | | | 0 (1 | OD | 050 | OI COD | |----------------------|--------|------|------|----------|-----|-----|----------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 93% | CI of OR | | 0 hours | 80.9 | 75% | 83% | 1 | | | | | | 17.8 | 88% | 54% | 2 | 0.0 | 0.0 | na | | | 1.84 | 100% | 9% | 3 | 1.0 | 0.0 | 54.9 | | | 40.2 | 75% | 70% | 4 | 6.7 | 0.6 | 72.5 | | | 70.4 | 75% | 80% | | | | | | | 143 | 63% | 90% | | | | | | 24 hours | 16.4 | 75% | 52% | 1 | | | | | | 4.52 | 88% | 24% | 2 | 0.0 | 0.0 | na | | | 1.84 | 100% | 9% | 3 | 0.5 | 0.0 | 10.1 | | | 40.2 | 63% | 70% | 4 | 2.7 | 0.6 | 11.6 | | | 70.4 | 63% | 80% | | | | | | | 143 | 63% | 90% | | | | | | 48 hours | 80.9 | 80% | 83% | 1 | | | | | | 80.9 | 80% | 83% | 2 | 0.0 | 0.0 | na | | | 1.84 | 100% | 9% | 3 | 0.0 | 0.0 | па | | | 40.2 | 80% | 70% | 4 | 4.2 | 0.3 | 53.0 | | | 70.4 | 80% | 80% | | · · | | | | | 143 | 60% | 90% | | | | | ## Hepatocyte growth factor sCr or UO U.S. Patent | oci oi c o | | | | | | | | | |------------|-----------------|-----------|----------------|-----------|----------------|-----------|--|--| | | 0 hr prior to A | AKI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | | | | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | | median | 680.387 | 4037.748 | 680.387 | 1889.437 | 680.387 | 994.934 | | | | average | 1568.697 | 7749.618 | 1568.697 | 3054.082 | 1568.697 | 2751.743 | | | | stdev | 1805.239 | 15137.567 | 1805.239 | 2761.856 | 1805.239 | 2469.215 | | | | p (t-test) | | 0.000 | | 0.021 | | 0.105 | | | | min | 51.808 | 601.481 | 51.808 | 406.000 | 51.808 | 406.000 | | | | max | 7752.950 | 52712.475 | 7752.950 | 8813.508 | 7752.950 | 5912.184 | | | | n (Samp) | 99 | 11 | 99 | 10 | 99 | 7 | | | | n (Pat) | 99 | 11 | 99 | 10 | 99 | 7 | | | sCr only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|-----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 904.843 | 1517.974 | 904.843 | 1239.467 | 904.843 | 960.960 | | average | 1972.450 | 12014.181 | 1972.450 | 1839.607 | 1972.450 | 1347.811 | | stdev | 2780.569 | 22788.548 | 2780.569 | 1509.169 | 2780.569 | 793.822 | | p (t-test) | | 0.000 | | 0.924 | | 0.699 | | min | 51.808 | 821.575 | 51.808 | 821.575 | 51.808 | 821.575 | | max | 25326.471 | 52712.475 | 25326.471 | 4057.920 | 25326.471 | 2260.899 | | n (Samp) | 161 | 5 | 161 | 4 | 161 | 3 | | n (Pat) | 161 | 5 | 161 | 4 | 161 | 3 | UO only | , | | | | | | | |------------|----------------|----------|----------------|-----------|----------------|-----------| | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 628.920 | 4047.834 | 628.920 | 3149.323 | 628.920 | 2880.853 | | average | 1664.488 | 3774.222 | 1664.488 | 3525.159 | 1664.488 | 3073.437 | | stdev | 2459.709 | 2842.020 | 2459.709 | 2916.250 | 2459.709 | 2539.120 | | p (t-test) | | 0.024 | | 0.047 | | 0.180 | | min | 51.808 | 601.481 | 51.808 | 406.000 | 51.808 | 406.000 | | max | 17531.948 | 8813.508 | 17531.948 | 8813.508 | 17531.948 | 5912.184 | | n (Samp) | 84 | 8 | 84 | 8 | 84 | 6 | | n (Pat) | 84 | 8 | 84 | 8 | 84 | 6 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.77 | 0.086 | 99 | 11 | 0.001 | | 24 hours | 0.72 | 0.094 | 99 | 10 | 0.017 | | 48 hours | 0.70 | 0.114 | 99 | 7 | 0.087 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------
-------| | 0 hours | 0.69 | 0.133 | 161 | 5 | 0.145 | | 24 hours | 0.62 | 0.152 | 161 | 4 | 0.437 | | 48 hours | 0.57 | 0.174 | 161 | 3 | 0.690 | $\overline{\mathsf{UO}}$ only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.79 | 0.098 | 84 | 8 | 0.003 | | 24 hours | 0.75 | 0.102 | 84 | 8 | 0.013 | | 48 hours | 0.73 | 0.121 | 84 | 6 | 0.061 | sCr <u>or UO</u> | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% (| CI of OR | |----------------------|-----------------|------|------|----------|----|-------|----------| | 0 hours | 1034.9179 | 73% | 62% | 1 | | | | | | 856.25091 | 82% | 60% | 2 | na | na | na | | | 814.68335 | 91% | 57% | 3 | na | na | na | | | 1665.8905 | 55% | 71% | 4 | na | na | na | | | 2569.5825 | 55% | 81% | | | | | | | 4662.0537 | 36% | 91% | | | | | | 24 hours | 1034.9179 | 70% | 62% | 1 | 1 | | | |----------|-----------|------|-----|---|-----|-----|------| | | 856.25091 | 80% | 60% | 2 | 0.0 | 0.0 | na | | | 814.68335 | 90% | 57% | 3 | 4.5 | 0.3 | 61.5 | | | 1665.8905 | 50% | 71% | 4 | 5.7 | 0.5 | 69.7 | | | 2569.5825 | 40% | 81% | | | | | | | 4662.0537 | 30% | 91% | | | | | | 48 hours | 856.25091 | 71% | 60% | 1 | | | | | | 814.68335 | 86% | 57% | 2 | na | na | na | | | 398.32477 | 100% | 26% | 3 | na | na | na | | | 1665.8905 | 43% | 71% | 4 | na | na | na | | | 2569.5825 | 43% | 81% | | | | | | | 4662.0537 | 43% | 91% | | | | | | Oonly | Cutoff | | spec | Quartile | OR | 95% CI of
OR | | |----------------------|-----------|------|------|----------|-----|-----------------|------| | Time prior ΛKI stage | value | sens | | | | | | | 0 hours | 1034.9179 | 75% | 64% | 1 | | | | | | 832.22559 | 88% | 63% | 2 | na | na | na | | | 591.03997 | 100% | 44% | 3 | na | na | na | | | 1449.1471 | 63% | 70% | 4 | na | na | na | | | 3331.9938 | 63% | 81% | | | | | | | 4625.6742 | 38% | 90% | | | | | | 24 hours | 1034.9179 | 75% | 64% | 1 | | | | | | 832.22559 | 88% | 63% | 2 | 0.0 | 0.0 | na | | | 401.51729 | 100% | 26% | 3 | 3.3 | 0.2 | 54.3 | | | 1449.1471 | 63% | 70% | 4 | 4.6 | 0.3 | 65.0 | | | 3331.9938 | 50% | 81% | | | | | | | 4625.6742 | 38% | 90% | | | | | | 48 hours | 832.22559 | 83% | 63% | 1 | | | | | | 832.22559 | 83% | 63% | 2 | na | na | na | | | 401.51729 | 100% | 26% | 3 | na | na | na | | | 1449.1471 | 50% | 70% | 4 | na | na | na | | | 3331.9938 | 50% | 81% | | | | | | | 4625.6742 | 50% | 90% | | | | | ## Interferon gamma | -0- | | т | T | |-----|------------|---|---| | | α r | | | | | 0 hr prior to A | AKI stage | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | |------------|-----------------|-----------|----------------|-------------------|--------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 1 Cohort 2 | | Cohort 2 | | median | 4.105 | 9.870 | 4.105 | 8.440 | 4.105 | 4.420 | | average | 9.379 | 12.182 | 9.379 | 10.766 | 9.379 | 8.370 | | stdev | 13.003 | 8.529 | 13.003 | 9.056 | 13.003 | 9.876 | | p (t-test) | | 0.392 | | 0.672 | | 0.812 | | min | 0.046 | 1.580 | 0.046 | 1.580 | 0.046 | 1.580 | | max | 80.000 | 32.100 | 80.000 | 32.100 | 80.000 | 32.100 | | n (Samp) | 112 | 17 | 112 | 17 | 112 | 10 | | n (Pat) | 112 | 17 | 112 | 17 | 112 | 10 | sCr only | oci omj | | | | | | | | | | |------------|-----------------|----------|----------------|-----------|-------------------------|----------|--|--|--| | | 0 hr prior to A | KI stage | 24 hr prior to | \KI stage | 48 hr prior toΛKI stage | | | | | | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | | | median | 4.185 | 8.185 | 4.185 | 8.185 | 4.185 | 4.270 | | | | | average | 9.915 | 10.565 | 9.915 | 10.170 | 9.915 | 4.832 | | | | | stdev | 12.683 | 7.987 | 12.683 | 8.321 | 12.683 | 3.443 | | | | | p (t-test) | | 0.886 | | 0.955 | | 0.373 | | | | | min | 0.046 | 1.580 | 0.046 | 1.580 | 0.046 | 1.580 | | | | | max | 80.000 | 24.300 | 80.000 | 24.300 | 80.000 | 9.870 | | | | | n (Samp) | 180 | 8 | 180 | 8 | 180 | 5 | | | | | n (Pat) | 180 | 8 | 180 | 8 | 180 | 5 | | | | UO only | | 0 hr prior toA | oAKI stage 24 hr prior toAKI stage | | AKI stage | 48 hr prior toAKI stage | | |------------|----------------|------------------------------------|----------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 4.100 | 9.870 | 4.100 | 8.440 | 4.100 | 6.500 | | average | 8.775 | 12.632 | 8.775 | 10.731 | 8.775 | 10.844 | | stdev | 11.476 | 8.555 | 11.476 | 9.186 | 11.476 | 11.036 | | p (t-test) | | 0.284 | | 0.588 | | 0.646 | | min | 0.046 | 1.830 | 0.046 | 1.830 | 0.046 | 1.830 | | max | 48.700 | 32.100 | 48.700 | 32.100 | 48.700 | 32.100 | | n (Samp) | 89 | 11 | 89 | 11 | 89 | 7 | | n (Pat) | 89 | 11 | 89 | 11 | 89 | 7 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.67 | 0.076 | 112 | 17 | 0.022 | | 24 hours | 0.62 | 0.077 | 112 | 17 | 0.134 | | 48 hours | 0.53 | 0.097 | 112 | 10 | 0.730 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.61 | 0.108 | 180 | 8 | 0.303 | | 24 hours | 0.59 | 0.108 | 180 | 8 | 0.423 | | 48 hours | 0.46 | 0.127 | 180 | 5 | 0.723 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.72 | 0.091 | 89 | 11 | 0.017 | | 24 hours | 0.65 | 0.094 | 89 | 11 | 0.120 | | 48 hours | 0.63 | 0.117 | 89 | 7 | 0.279 | sCr or UO | | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-------|----------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% (| CI of OR | | 0 hours | 6.43 | 71% | 65% | 1 | | | | | | 4.27 | 82% | 55% | 2 | 0.5 | 0.0 | 10.4 | | | 1.78 | 94% | 26% | 3 | 4.2 | 1.0 | 17.1 | | | 8.23 | 65% | 71% | 4 | 4.0 | 1.0 | 16.4 | | | 15.4 | 35% | 80% | | | | | 48 hours | | 28.1 | 6% | 90% | I | <u></u> | I | | |----------------------|--------|------|-------|----------|---------|----------|----------| | 24 hours | 4.26 | 71% | 54% | 1 | | | | | | 2.72 | 82% | 35% | 2 | 0.6 | 0.1 | 3.8 | | | 1.78 | 94% | 26% | 3 | 2.2 | 0.7 | 6.9 | | | 8.23 | 53% | 71% | 4 | 2.1 | 0.7 | 6.6 | | | 15.4 | 29% | 80% | | | | | | | 28.1 | 6% | 90% | | | | | | 48 hours | 2.96 | 70% | 38% | 1 | | | | | | 1.83 | 80% | 26% | 2 | 3.1 | 0.2 | 48.6 | | | 1.78 | 90% | 26% | 3 | 4.5 | 0.3 | 59.6 | | | 8.23 | 30% | 71% | 4 | 2.0 | 0.1 | 43.3 | | | 15.4 | 20% | 80% | | | | | | | 28.1 | 10% | 90% | | | | | | only | • | | • | | | • | | | | Cutoff | | | | | | | | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% | CI of OR | | 0 hours | 6.25 | 75% | 61% | 1 | | | | | | 2.96 | 88% | 38% | 2 | 1.0 | 0.0 | 54.9 | | | 1.54 | 100% | 17% | 3 | 4.3 | 0.3 | 54.2 | | | 9.87 | 38% | 70% | 4 | 2.0 | 0.1 | 42.2 | | | 17.7 | 25% | 80% | | | | | | | 29.7 | 0% | 90% | | | | | | 24 hours | 4.26 | 75% | 52% | 1 | | | | | | 1.83 | 88% | 26% | 2 | 1.0 | 0.0 | 54.9 | | | 1.54 | 100% | 17% | 3 | 4.3 | 0.3 | 54.2 | | | 9.87 | 38% | 70% | 4 | 2.0 | 0.1 | 42.2 | | | 17.7 | 25% | 80% | | | | | | | 29.7 | 0% | 90% | | | | | | 48 hours | 1.83 | 80% | 26% | 1 | | | | | | 1.83 | 80% | 26% | 2 | na | na | na | | | 1.54 | 100% | 17% | 3 | na | na | na | | | 9.87 | 0% | 70% | 4 | na | na | na | | | 17.7 | 0% | 80% | | | | | | | 29.7 | 0% | 90% | | | | | | only | | | | | | | | | | Cutoff | | | | | | | | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% | CI of OR | | 0 hours | 8.23 | 73% | 70% | 1 | | ↓ | | | | 6.43 | 82% | 67% | 2 | 0.0 | 0.0 | na | | | 4.26 | 91% | 56% | 3 | 6.0 | 0.5 | 75.4 | | | 8.88 | 55% | 71% | 4 | 6.0 | 0.5 | 75.4 | | | 14.6 | 36% | 81% | | | | | | | 28.1 | 9% | 91% | | | | | | 24 hours | 4.26 | 73% | 56% | 1 | | | | | | 2.96 | 82% | 39% | 2 | 2.1 | 0.1 | 46.6 | | | 2.72 | 91% | 36% | 3 | 4.6 | 0.3 | 63.1 | | | 8.88 | 45% | 71% | 4 | 4.6 | 0.3 | 63.1 | | | 14.6 | 27% | 81% | | | | | | | 28.1 | 9% | 91% | | | | | | 10.1 | 1.07 | 71.0 | 57.01 | 1 | | | | 4.26 2.96 1.79 8.88 14.6 28.1 71% 86% 100% 29% 29% 14% 56% 39% 26% 71% 81% 91% 2 na na na na na na na na #### Interleukin-16 sCr or UO | | 0 hr prior to A | KI stage | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | |------------|-----------------|----------|----------------|-----------|--------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 532.000 | 1060.000 | 532.000 | 1000.000 | 532.000 | 881.000 | | average | 692.429 | 1147.647 | 692.429 | 982.529 | 692.429 | 861.000 | | stdev | 1070.969 | 857.072 | 1070.969 | 567.592 | 1070.969 | 448.785 | | p (t-test) | | 0.097 | | 0.277 | | 0.623 | | min | 178.000 | 332.000 | 178.000 | 332.000 | 178.000 | 332.000 | | max | 11500.000 | 3940.000 | 11500.000 | 2230.000 | 11500.000 | 1560.000 | | n (Samp) | 112 | 17 | 112 | 17 | 112 | 10 | | n (Pat) | 112 | 17 | 112 | 17 | 112 | 10 | sCr only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 533.000 | 1030.000 | 533.000 | 841.000 | 533.000 | 1000.000 | | average | 677.567 | 938.875 | 677.567 | 863.750 | 677.567 | 930.800 | | stdev | 884.793 | 377.777 | 884.793 | 401.997 | 884.793 | 459.185 | | p (t-test) | | 0.407 | | 0.555 | | 0.525 | | min | 178.000 | 332.000 | 178.000 | 332.000 | 178.000 | 332.000 | | max | 11500.000 | 1560.000 | 11500.000 | 1560.000 | 11500.000 | 1560.000 | | n (Samp) | 180 | 8 | 180 | 8 | 180 | 5 | | n (Pat) | 180 | 8 | 180 | 8 | 180 | 5 | UO only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI
stage | 48 hr prior toAKI stage | | |------------|----------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 533.000 | 1080.000 | 533.000 | 1080.000 | 533.000 | 1080.000 | | average | 600.112 | 1279.909 | 600.112 | 1079.364 | 600.112 | 862.286 | | stdev | 285.110 | 1011.900 | 285.110 | 617.830 | 285.110 | 410.726 | | p (t-test) | | 0.000 | | 0.000 | | 0.026 | | min | 178.000 | 361.000 | 178.000 | 361.000 | 178.000 | 335.000 | | max | 1550.000 | 3940.000 | 1550.000 | 2230.000 | 1550.000 | 1380.000 | | n (Samp) | 89 | 11 | 89 | 11 | 89 | 7 | | n (Pat) | 89 | 11 | 89 | 11 | 89 | 7 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.75 | 0.071 | 112 | 17 | 0.000 | | 24 hours | 0.71 | 0.074 | 112 | 17 | 0.006 | | 48 hours | 0.65 | 0.098 | 112 | 10 | 0.117 | sCr only | Time prior | ΛUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.76 | 0.100 | 180 | 8 | 0.009 | | 24 hours | 0.70 | 0.106 | 180 | 8 | 0.059 | | 48 hours | 0.72 | 0.131 | 180 | 5 | 0.091 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.77 | 0.086 | 89 | 11 | 0.002 | | 24 hours | 0.74 | 0.089 | 89 | 11 | 0.007 | | 48 hours | 0.67 | 0.116 | 89 | 7 | 0.132 | sCr or UO | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% | CI of OR | |----------------------|-----------------|------|------|----------|-----|-----|----------| | 0 hours | 723 | 71% | 79% | 1 | | | | | | 546 | 82% | 54% | 2 | 1.0 | 0.1 | 8.1 | | | 360 | 94% | 16% | 3 | 1.0 | 0.1 | 8.1 | | | 651 | 71% | 71% | 4 | 7.5 | 2.0 | 27.9 | | | 733 | 65% | 80% | | | | | | | 1040 | 53% | 90% | | | | | | 24 hours | l 551 | l 71% | 54% | l 1 | l | 1 | l 1 | |----------|--------------|-------|-----|-----|-----|-----|------| | | 515 | 82% | 48% | 2 | 1.0 | 0.1 | 8.1 | | | 360 | 94% | 16% | 3 | 2.1 | 0.4 | 10.7 | | | 651 | 59% | 71% | 4 | 5.6 | 1.5 | 21.6 | | | 733 | 53% | 80% | | | | | | | 1040 | 47% | 90% | | | | | | 48 hours | 546 | 70% | 54% | 1 | | | | | | 426 | 80% | 29% | 2 | 0.5 | 0.0 | 10.1 | | | 332 | 90% | 13% | 3 | 1.0 | 0.1 | 8.2 | | | 651 | 60% | 71% | 4 | 2.7 | 0.6 | 12.3 | | | 733 | 50% | 80% | | | | | | | 1040 | 50% | 90% | | | | | sCr only | SCI OHIY | | | | | | | | |----------------------|-----------------|------|------|----------|-----|-----|----------| | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% | CI of OR | | 0 hours | 769 | 75% | 82% | 1 | | | | | | 566 | 88% | 56% | 2 | 0.0 | 0.0 | na | | | 327 | 100% | 10% | 3 | 1.0 | 0.0 | 54.9 | | | 655 | 75% | 70% | 4 | 6.7 | 0.6 | 72.5 | | | 733 | 75% | 80% | | | | | | | 1040 | 50% | 90% | | | | | | 24 hours | 587 | 75% | 59% | 1 | | | | | | 525 | 88% | 47% | 2 | 1.0 | 0.0 | 54.9 | | | 327 | 100% | 10% | 3 | 2.0 | 0.1 | 42.2 | | | 655 | 63% | 70% | 4 | 4.3 | 0.3 | 54.2 | | | 733 | 50% | 80% | | | | | | | 1040 | 38% | 90% | | | | | | 48 hours | 679 | 80% | 73% | 1 | | | | | | 679 | 80% | 73% | 2 | 0.0 | 0.0 | na | | | 327 | 100% | 10% | 3 | 1.0 | 0.0 | 55.0 | | | 655 | 80% | 70% | 4 | 3.1 | 0.2 | 45.7 | | | 733 | 60% | 80% | | | | | | | 1040 | 40% | 90% | | | | | UO only | | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-----|----------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% | CI of OR | | 0 hours | 723 | 73% | 79% | 1 | | | | | | 546 | 82% | 53% | 2 | 2.1 | 0.1 | 46.6 | | | 426 | 91% | 29% | 3 | 1.0 | 0.0 | 59.3 | | | 666 | 73% | 71% | 4 | 9.3 | 0.8 | 106.1 | | | 763 | 64% | 81% | | | | | | | 1020 | 55% | 91% | | | | | | 24 hours | 551 | 73% | 53% | 1 | | | | | | 546 | 82% | 53% | 2 | 2.1 | 0.1 | 46.6 | | | 426 | 91% | 29% | 3 | 1.0 | 0.0 | 59.3 | | | 666 | 64% | 71% | 4 | 9.3 | 0.8 | 106.1 | | | 763 | 64% | 81% | | | | | | | 1020 | 55% | 91% | | | | | | 48 hours | 546 | 71% | 53% | 1 | | | | | | 426 | 86% | 29% | 2 | 1.0 | 0.0 | 59.8 | | | 319 | 100% | 12% | 3 | 1.0 | 0.0 | 59.8 | | | 666 | 57% | 71% | 4 | 4.6 | 0.3 | 64.0 | | | 763 | 57% | 81% | | | | | | | 1020 | 57% | 91% | | | | | ## Interleukin-2 sCr or UO | | 0 hr prior to AKI stage | | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|-------------------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 0.508 | 1.225 | 0.508 | 1.238 | 0.508 | 1.250 | | average | 0.751 | 1.641 | 0.751 | 1.738 | 0.751 | 1.835 | | stdev | 0.977 | 1.339 | 0.977 | 1.369 | 0.977 | 1.579 | | p (t-test) | | 0.007 | | 0.004 | | 0.008 | | min | 0.000 | 0.575 | 0.000 | 0.575 | 0.000 | 0.605 | | max | 7.239 | 5.074 | 7.239 | 5.074 | 7.239 | 5.074 | | n (Samp) | 99 | 11 | 99 | 10 | 99 | 7 | | n (Pat) | 99 | 11 | 99 | 10 | 99 | 7 | sCr only | | 0 hr prior toAKI stage | | 24 hr prior to | 24 hr prior toAKI stage | | AKI stage | |------------|------------------------|----------|----------------|-------------------------|----------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 0.589 | 1.250 | 0.589 | 1.341 | 0.589 | 1.250 | | average | 1.046 | 1.289 | 1.046 | 1.449 | 1.046 | 1.085 | | stdev | 1.838 | 0.790 | 1.838 | 0.814 | 1.838 | 0.451 | | p (t-test) | | 0.769 | | 0.663 | | 0.970 | | min | 0.000 | 0.575 | 0.000 | 0.575 | 0.000 | 0.575 | | max | 19.127 | 2.538 | 19.127 | 2.538 | 19.127 | 1.431 | | n (Samp) | 161 | 5 | 161 | 4 | 161 | 3 | | n (Pat) | 161 | 5 | 161 | 4 | 161 | 3 | UO only | | 0 hr prior toA | .KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | | |------------|----------------|-----------|----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 0.542 | 1.184 | 0.542 | 1.173 | 0.542 | 1.186 | | | average | 0.851 | 1.679 | 0.851 | 1.676 | 0.851 | 1.902 | | | stdev | 1.069 | 1.516 | 1.069 | 1.517 | 1.069 | 1.719 | | | p (t-test) | | 0.047 | | 0.047 | | 0.028 | | | min | 0.045 | 0.575 | 0.045 | 0.575 | 0.045 | 0.605 | | | max | 7.239 | 5.074 | 7.239 | 5.074 | 7.239 | 5.074 | | | n (Samp) | 84 | 8 | 84 | 8 | 84 | 6 | | | n (Pat) | 84 | 8 | 84 | 8 | 84 | 6 | | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.84 | 0.076 | 99 | 11 | 0.000 | | 24 hours | 0.85 | 0.077 | 99 | 10 | 0.000 | | 48 hours | 0.85 | 0.093 | 99 | 7 | 0.000 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.73 | 0.131 | 161 | 5 | 0.083 | | 24 hours | 0.76 | 0.141 | 161 | 4 | 0.065 | | 48 hours | 0.71 | 0.170 | 161 | 3 | 0.212 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.81 | 0.096 | 84 | 8 | 0.001 | | 24 hours | 0.81 | 0.096 | 84 | 8 | 0.001 | | 48 hours | 0.81 | 0.109 | 84 | 6 | 0.004 | ## Interleukin-12 p40 sCr or UO | | 0 hr prior to A | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | | | |------------|-----------------|----------|----------------|-----------|----------------|-----------|--|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | | median | 33.113 | 18.459 | 33.113 | 11.088 | 33.113 | 11.758 | | | | average | 45.270 | 28.085 | 45.270 | 22.882 | 45.270 | 27.059 | | | | stdev | 45.927 | 27.038 | 45.927 | 27.869 | 45.927 | 32.021 | | | | p (t-test) | | 0.227 | | 0.134 | | 0.306 | | | | min | 0.000 | 3.180 | 0.000 | 0.000 | 0.000 | 3.180 | | | | max | 230.675 | 83.149 | 230.675 | 83.149 | 230.675 | 83.149 | | | | n (Samp) | 99 | 11 | 99 | 10 | 99 | 7 | | | | n (Pat) | 99 | 11 | 99 | 10 | 99 | 7 | | | sCr only | , | | | | | | | | | | |------------|----------------|----------|----------------|-----------|----------------|-----------|--|--|--| | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | | | | | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | | | median | 32.159 | 19.123 | 32.159 | 33.795 | 32.159 | 3.180 | | | | | average | 41.702 | 30.442 | 41.702 | 33.272 | 41.702 | 21.833 | | | | | stdev | 39.600 | 27.399 | 39.600 | 30.782 | 39.600 | 35.097 | | | | | p (t-test) | | 0.529 | | 0.673 | | 0.390 | | | | | min | 0.000 | 3.180 | 0.000 | 3.180 | 0.000 | 0.000 | | | | | max | 230.675 | 62.318 | 230.675 | 62.318 | 230.675 | 62.318 | | | | | n (Samp) | 161 | 5 | 161 | 4 | 161 | 3 | | | | | n (Pat) | 161 | 5 | 161 | 4 | 161 | 3 | | | | UO only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 32.732 | 23.725 | 32.732 | 13.201 | 32.732 | 13.201 | | average | 42.660 | 34.526 | 42.660 | 26.903 | 42.660 | 31.039 | | stdev | 42.380 | 29.194 | 42.380 | 30.042 | 42.380 | 33.126 | | p (t-test) | | 0.598 | | 0.308 | | 0.513 | | min | 0.000 | 4.527 | 0.000 | 0.000 | 0.000 | 4.527 | | max | 230.675 | 83.149 | 230.675 | 83.149 | 230.675 | 83.149 | | n (Samp) | 84 | 8 | 84 | 8 | 84 | 6 | | n (Pat) | 84 | 8 | 84 | 8 | 84 | 6 | sCr or UO | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.36 | 0.081 | 99 | 11 | 0.096 | | 24 hours | 0.29 | 0.075 | 99 | 10 | 0.005 | | 48 hours | 0.33 | 0.094 | 99 | 7 | 0.072 | sCr only | | Time prior
AKI
stage | AUC | SE | nCohort 1 | nCohort 2 | p | |---|-------------------------|------|-------|-----------|-----------|-------| | | 0 hours | 0.42 | 0.123 | 161 | 5 | 0.521 | | | 24 hours | 0.46 | 0.142 | 161 | 4 | 0.759 | | Г | 48 hours | 0.30 | 0.130 | 161 | 3 | 0.127 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.46 | 0.104 | 84 | 8 | 0.690 | | 24 hours | 0.35 | 0.093 | 84 | 8 | 0.117 | | 48 hours | 0.39 | 0.112 | 84 | 6 | 0.347 | sCr or UO | SCI OI UU | | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|----------| | | Cutoff | | | | | | | | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% (| CI of OR | | 0 hours | 9.8385095 | 73% | 14% | 1 | | | | | | 9.4129279 | 82% | 14% | 2 | 0.0 | 0.0 | na | | | 3.3229148 | 91% | 8% | 3 | 1.0 | 0.2 | 4.3 | | | 43.818211 | 27% | 71% | 4 | 1.9 | 0.6 | 6.4 | | | 65.137251 | 9% | 81% | | | | | | | 108.38454 | 0% | 91% | | | | | Oct. 18, 2016 | 24 hours | 9.4129279 | 70% | 14% | 1 | | | | |----------|-----------|------|-----|---|-----|-----|------| | | 3.3229148 | 80% | 8% | 2 | 0.0 | 0.0 | na | | | 1.2982033 | 90% | 7% | 3 | 1.0 | 0.1 | 8.6 | | | 43.818211 | 20% | 71% | 4 | 3.7 | 0.8 | 16.2 | | | 65.137251 | 10% | 81% | | | | | | | 108.38454 | 0% | 91% | | | | | | 48 hours | 9.4129279 | 71% | 14% | 1 | | | | | | 3.3229148 | 86% | 8% | 2 | 0.0 | 0.0 | na | | | 1.2982033 | 100% | 7% | 3 | 0.0 | 0.0 | na | | | 43.818211 | 29% | 71% | 4 | 3.0 | 0.6 | 13.9 | | | 65.137251 | 14% | 81% | | | | | | | 108.38454 | 0% | 91% | | | | | sCr only | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% | CI of OR | |----------------------|-----------------|------|------|----------|-----|-----|----------| | 0 hours | 9.6041633 | 80% | 14% | 1 | | | | | | 9.6041633 | 80% | 14% | 2 | 0.0 | 0.0 | na | | | 1.846505 | 100% | 7% | 3 | 0.5 | 0.0 | 10.2 | | | 44.321401 | 40% | 70% | 4 | 1.0 | 0.1 | 8.0 | | | 55.567948 | 40% | 80% | | | | | | | 89.565615 | 0% | 90% | | | | | | 24 hours | 9.6041633 | 75% | 14% | 1 | | | | | | 1.846505 | 100% | 7% | 2 | 0.0 | 0.0 | na | | | 1.846505 | 100% | 7% | 3 | 0.0 | 0.0 | na | | | 44.321401 | 50% | 70% | 4 | 1.0 | 0.1 | 8.0 | | | 55.567948 | 50% | 80% | | | | | | | 89.565615 | 0% | 90% | | | | | | 48 hours | 0 | 100% | 0% | 1 | | | | | | 0 | 100% | 0% | 2 | 0.0 | 0.0 | na | | | 0 | 100% | 0% | 3 | 0.0 | 0.0 | na | | | 44.321401 | 33% | 70% | 4 | 2.1 | 0.1 | 42.9 | | | 55.567948 | 33% | 80% | | | | | | | 89.565615 | 0% | 90% | | | | | UO only | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-----|----------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% | CI of OR | | 0 hours | 11.290059 | 75% | 19% | 1 | | | | | | 9.4129279 | 88% | 18% | 2 | 0.0 | 0.0 | na | | | 3.3229148 | 100% | 8% | 3 | 0.6 | 0.1 | 3.9 | | | 44.429066 | 38% | 70% | 4 | 1.0 | 0.2 | 4.5 | | | 61.565682 | 25% | 81% | | | | | | | 97.366099 | 0% | 90% | | | | | | 24 hours | 9.4129279 | 75% | 18% | 1 | | | | | | 3.3229148 | 88% | 8% | 2 | 0.0 | 0.0 | na | | | 0 | 100% | 0% | 3 | 1.0 | 0.1 | 8.6 | | | 44.429066 | 25% | 70% | 4 | 2.2 | 0.4 | 11.7 | | | 61.565682 | 25% | 81% | | | | | | | 97.366099 | 0% | 90% | | | | | | 48 hours | 9.4129279 | 83% | 18% | 1 | | | | | | 9.4129279 | 83% | 18% | 2 | 0.0 | 0.0 | na | | | 3.3229148 | 100% | 8% | 3 | 0.5 | 0.0 | 10.8 | | | 44.429066 | 33% | 70% | 4 | 1.7 | 0.3 | 10.3 | | | 61.565682 | 33% | 81% | | | | | | | 97.366099 | 0% | 90% | | | | | ## Matrix metalloproteinase-2 sCr or UO | | 0 hr prior to A | AKI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|-----------------|-----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 2850.000 | 3740.000 | 2850.000 | 3460.000 | 2850.000 | 3650.000 | | average | 2926.071 | 3797.647 | 2926.071 | 3435.294 | 2926.071 | 3441.000 | | stdev | 930.041 | 1332.078 | 930.041 | 1396.733 | 930.041 | 1411.102 | | p (t-test) | | 0.001 | | 0.053 | | 0.112 | | min | 1410.000 | 1890.000 | 1410.000 | 1350.000 | 1410.000 | 1360.000 | | max | 5710.000 | 5870.000 | 5710.000 | 5630.000 | 5710.000 | 5380.000 | | n (Samp) | 112 | 17 | 112 | 17 | 112 | 10 | | n (Pat) | 112 | 17 | 112 | 17 | 112 | 10 | sCr only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 2885.000 | 3610.000 | 2885.000 | 2895.000 | 2885.000 | 2280.000 | | average | 2987.000 | 3761.250 | 2987.000 | 3146.250 | 2987.000 | 3100.000 | | stdev | 979.445 | 1517.803 | 979.445 | 1495.965 | 979.445 | 1681.800 | | p (t-test) | | 0.034 | | 0.661 | | 0.803 | | min | 1070.000 | 1890.000 | 1070.000 | 1350.000 | 1070.000 | 1360.000 | | max | 6370.000 | 5870.000 | 6370.000 | 5380.000 | 6370.000 | 5380.000 | | n (Samp) | 180 | 8 | 180 | 8 | 180 | 5 | | n (Pat) | 180 | 8 | 180 | 8 | 180 | 5 | UO only | | 0 hr prior to A | KI stage | 24 hr prior toAKI stage | | 48 hr prior to | AKI stage | |------------|-----------------|----------|-------------------------|----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 2910.000 | 3840.000 | 2910.000 | 3840.000 | 2910.000 | 3840.000 | | average | 2957.528 | 3939.091 | 2957.528 | 3826.364 | 2957.528 | 3795.714 | | stdev | 938.245 | 1209.913 | 938.245 | 1303.137 | 938.245 | 1307.196 | | p (t-test) | | 0.002 | | 0.007 | | 0.030 | | min | 1410.000 | 2110.000 | 1410.000 | 2110.000 | 1410.000 | 2110.000 | | max | 5710.000 | 5630.000 | 5710.000 | 5630.000 | 5710.000 | 5380.000 | | n (Samp) | 89 | 11 | 89 | 11 | 89 | 7 | | n (Pat) | 89 | 11 | 89 | 11 | 89 | 7 | sCr or UO | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.69 | 0.075 | 112 | 17 | 0.011 | | 24 hours | 0.60 | 0.077 | 112 | 17 | 0.215 | | 48 hours | 0.60 | 0.098 | 112 | 10 | 0.305 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.64 | 0.108 | 180 | 8 | 0.195 | | 24 hours | 0.50 | 0.105 | 180 | 8 | 0.992 | | 48 hours | 0.46 | 0.128 | 180 | 5 | 0.771 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.75 | 0.089 | 89 | 11 | 0.006 | | 24 hours | 0.70 | 0.092 | 89 | 11 | 0.029 | | 48 hours | 0.70 | 0.114 | 89 | 7 | 0.084 | sCr or UO | | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 3100 | 71% | 64% | 1 | | | | | | 2130 | 88% | 21% | 2 | 0.2 | 0.0 | 3.0 | | | 2100 | 94% | 21% | 3 | 0.7 | 0.2 | 2.6 | | | 3270 | 65% | 71% | 4 | 2.6 | 1.1 | 6.2 | | | 3660 | 53% | 80% | | | | | | | 4030 | 41% | 90% | | | | | | 24 hours | 2260 | 71% | 27% | 1 | | | | |----------|------|-----|-----|---|-----|-----|-----------------| | | 2130 | 82% | 21% | 2 | 0.4 | 0.1 | 1.6 | | | 1730 | 94% | 9% | 3 | 0.4 | 0.1 | 1.6 | | | 3270 | 53% | 71% | 4 | 1.7 | 0.8 | 3.8 | | | 3660 | 47% | 80% | | | | | | | 4030 | 35% | 90% | | | | | | 48 hours | 2130 | 80% | 21% | 1 | | | | | | 2130 | 80% | 21% | 2 | 0.0 | 0.0 | na | | | 2100 | 90% | 21% | 3 | 0.2 | 0.0 | 3.0 | | | 3270 | 60% | 71% | 4 | 1.3 | 0.4 | 3.5 | | | 3660 | 50% | 80% | | | | , in the second | | | 4030 | 40% | 90% | | | | | sCr only | CI Olly | | | | | | | | |----------------------|-----------------|------|------|----------|-----|-------|---------| | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 2580 | 75% | 38% | 1 | | 70.00 | | | o nours | 2130 | 88% | 18% | 2 | 0.5 | 0.0 | 10.1 | | | 1850 | 100% | 10% | 3 | 0.5 | 0.0 | 10.1 | | | 3340 | 63% | 70% | 4 | 2.1 | 0.4 | 10.0 | | | 3710 | 50% | 80% | | | | | | | 4290 | 38% | 90% | | | | | | 24 hours | 2130 | 75% | 18% | 1 | | | | | | 1730 | 88% | 8% | 2 | 0.3 | 0.0 | 4.7 | | | 1290 | 100% | 2% | 3 | 0.3 | 0.0 | 4.7 | | | 3340 | 50% | 70% | 4 | 1.0 | 0.2 | 4.0 | | | 3710 | 38% | 80% | | | | | | | 4290 | 25% | 90% | | | | | | 48 hours | 2130 | 80% | 18% | 1 | | | | | | 2130 | 80% | 18% | 2 | 0.0 | 0.0 | na | | | 1290 | 100% | 2% | 3 | 0.5 | 0.0 | 10.3 | | | 3340 | 40% | 70% | 4 | 1.0 | 0.1 | 7.9 | | | 3710 | 40% | 80% | | | | | | | 4290 | 40% | 90% | | | | | UO only | | Cutoff | | | | | | | |----------------------|--------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 3440 | 73% | 76% | 1 | | | | | | 3100 | 82% | 62% | 2 | 0.0 | 0.0 | na | | | 2110 | 91% | 20% | 3 | 1.6 | 0.3 | 9.6 | | | 3230 | 73% | 71% | 4 | 3.6 | 0.8 | 16.2 | | | 3660 | 55% | 81% | | | | | | | 4220 | 45% | 91% | | | | | | 24 hours | 3100 | 73% | 62% | 1 | | | | | | 2260 | 82% | 27% | 2 | 0.5 | 0.0 | 10.7 | | | 2110 | 91% | 20% | 3 | 1.0 | 0.1 | 8.4 | | | 3230 | 64% | 71% | 4 | 3.6 | 0.8 | 16.2 | | | 3660 | 55% | 81% | | | | | | | 4220 | 45% | 91% | | | | | | 48 hours | 3440 | 71% | 76% | 1 | | | | | | 2110 | 86% | 20% | 2 | 0.0 | 0.0 | na | | | 2100 | 100% | 20% | 3 | 0.5 | 0.0 | 10.8 | | | 3230 | 71% | 71% | 4 | 2.2 | 0.4 | 11.5 | | | 3660 | 57% | 81% | | | | | | | 4220 | 43% | 91% | | | | | #### Midkine sCr or UO | | 0 hr prior to AKI stage | | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | | |------------|-------------------------|----------|----------------|-----------|--------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort
1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 6.599 | 21.914 | 6.599 | 33.926 | 6.599 | 4.169 | | | average | 20.838 | 25.691 | 20.838 | 27.379 | 20.838 | 19.131 | | | stdev | 23.837 | 23.326 | 23.837 | 24.489 | 23.837 | 25.917 | | | p (t-test) | | 0.569 | | 0.511 | | 0.873 | | | min | 0.417 | 0.904 | 0.417 | 0.889 | 0.417 | 0.889 | | | max | 72.865 | 56.007 | 72.865 | 56.007 | 72.865 | 56.007 | | | n (Samp) | 37 | 10 | 37 | 7 | 37 | 6 | | | n (Pat) | 37 | 10 | 37 | 7 | 37 | 6 | | sCr only | | 0 hr prior toA | KI stage | 24 hr prior to/ | \KI stage | 48 hr prior toΛKI stage | | | |------------|----------------|----------|-----------------|-----------|-------------------------|----------|--| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | | median | 4.680 | 6.094 | 4.680 | 4.725 | 4.680 | 3.891 | | | average | 17.629 | 16.930 | 17.629 | 13.185 | 17.629 | 3.891 | | | stdev | 21.611 | 18.023 | 21.611 | 18.063 | 21.611 | 4.225 | | | p (t-test) | | 0.944 | | 0.728 | | 0.376 | | | min | 0.002 | 0.904 | 0.002 | 0.904 | 0.002 | 0.904 | | | max | 72.865 | 39.002 | 72.865 | 33.926 | 72.865 | 6.879 | | | n (Samp) | 61 | 5 | 61 | 3 | 61 | 2 | | | n (Pat) | 61 | 5 | 61 | 3 | 61 | 2 | | UO only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior to | AKI stage | |------------|----------------|----------|----------------|-----------|----------------|-----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 13.546 | 50.413 | 13.546 | 47.601 | 13.546 | 25.053 | | average | 24.117 | 34.452 | 24.117 | 38.025 | 24.117 | 26.750 | | stdev | 25.221 | 26.599 | 25.221 | 25.087 | 25.221 | 29.686 | | p (t-test) | | 0.410 | | 0.312 | | 0.850 | | min | 0.417 | 1.287 | 0.417 | 0.889 | 0.417 | 0.889 | | max | 72.865 | 56.007 | 72.865 | 56.007 | 72.865 | 56.007 | | n (Samp) | 27 | 5 | 27 | 4 | 27 | 4 | | n (Pat) | 27 | 5 | 27 | 4 | 27 | 4 | sCr or UO | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.58 | 0.105 | 37 | 10 | 0.457 | | 24 hours | 0.56 | 0.122 | 37 | 7 | 0.625 | | 48 hours | 0.45 | 0.125 | 37 | 6 | 0.719 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.56 | 0.138 | 61 | 5 | 0.679 | | 24 hours | 0.49 | 0.171 | 61 | 3 | 0.962 | | 48 hours | 0.37 | 0.183 | 61 | 2 | 0.474 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | р | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.60 | 0.145 | 27 | 5 | 0.492 | | 24 hours | 0.61 | 0.160 | 27 | 4 | 0.489 | | 48 hours | 0.49 | 0.156 | 27 | 4 | 0.953 | sCr or UO | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 5.2959736 | 70% | 49% | 1 | | | | | | 3.8837139 | 80% | 46% | 2 | 0.9 | 0.1 | 9.7 | | | 0.9035326 | 90% | 16% | 3 | 1.5 | 0.2 | 11.9 | | | 29.610829 | 50% | 70% | 4 | 1.5 | 0.2 | 11.9 | | | 49.407783 | 30% | 81% | | | | | | | 63.085399 | 0% | 92% | | | | | | | _ | | | | _ | _ | | |----------|-----------|------|-----|---|-----|-----|------| | 24 hours | 3.8837139 | 71% | 46% | 1 | | | | | | 0.8890913 | 86% | 16% | 2 | 0.5 | 0.0 | 12.9 | | | 0.8763587 | 100% | 16% | 3 | 0.5 | 0.0 | 12.9 | | | 29.610829 | 57% | 70% | 4 | 1.7 | 0.2 | 13.7 | | | 49.407783 | 14% | 81% | | | | | | | 63.085399 | 0% | 92% | | | | | | 48 hours | 0.8890913 | 83% | 16% | 1 | | | | | | 0.8890913 | 83% | 16% | 2 | 0.5 | 0.0 | 12.9 | | | 0.8763587 | 100% | 16% | 3 | 0.5 | 0.0 | 12.9 | | | 29.610829 | 33% | 70% | 4 | 1.1 | 0.1 | 12.7 | | | 49.407783 | 17% | 81% | | | | | | | 63.085399 | 0% | 92% | | | | | sCr only | SCI OHLY | | | | | | | | |----------------------|-----------------|------|------|----------|-----|-------|---------| | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 4.679988 | 80% | 51% | 1 | | | | | | 4.679988 | 80% | 51% | 2 | 0.9 | 0.0 | 60.9 | | | 0.8763587 | 100% | 20% | 3 | 1.0 | 0.0 | 65.5 | | | 24.521014 | 40% | 70% | 4 | 2.0 | 0.1 | 49.1 | | | 40.35533 | 0% | 82% | | | | | | | 54.65313 | 0% | 90% | | | | | | 24 hours | 0.8763587 | 100% | 20% | 1 | | | | | | 0.8763587 | 100% | 20% | 2 | 1.0 | 0.0 | 65.5 | | | 0.8763587 | 100% | 20% | 3 | 0.0 | 0.0 | na | | | 24.521014 | 33% | 70% | 4 | 1.0 | 0.0 | 65.5 | | | 40.35533 | 0% | 82% | | | | | | | 54.65313 | 0% | 90% | | | | | | 48 hours | 0.8763587 | 100% | 20% | 1 | | | | | | 0.8763587 | 100% | 20% | 2 | na | na | na | | | 0.8763587 | 100% | 20% | 3 | na | na | na | | | 24.521014 | 0% | 70% | 4 | na | na | na | | | 40.35533 | 0% | 82% | | | | | | | 54.65313 | 0% | 90% | | | | | UO only | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 9.7721354 | 80% | 48% | 1 | | | | | | 9.7721354 | 80% | 48% | 2 | 1.0 | 0.0 | 88.2 | | | 0.8763587 | 100% | 19% | 3 | 1.0 | 0.0 | 88.2 | | | 31.133672 | 60% | 70% | 4 | 2.3 | 0.1 | 81.0 | | | 56.514382 | 0% | 81% | | | | | | | 64.187328 | 0% | 93% | | | | | | 24 hours | 40.35533 | 75% | 74% | 1 | | | | | | 0.8763587 | 100% | 19% | 2 | 0.0 | 0.0 | na | | | 0.8763587 | 100% | 19% | 3 | 2.0 | 0.1 | 72.7 | | | 31.133672 | 75% | 70% | 4 | 0.9 | 0.0 | 79.2 | | | 56.514382 | 0% | 81% | | | | | | | 64.187328 | 0% | 93% | | | | | | 48 hours | 1.3827646 | 75% | 26% | 1 | | | | | | 0.8763587 | 100% | 19% | 2 | 1.0 | 0.0 | 88.2 | | | 0.8763587 | 100% | 19% | 3 | 1.0 | 0.0 | 88.2 | | | 31.133672 | 50% | 70% | 4 | 1.2 | 0.0 | 107.9 | | | 56.514382 | 0% | 81% | | | | | | | 64.187328 | 0% | 93% | | | | | #### Serum amyloid P-component sCr or UO | | 0 hr prior to AKI stage | | 24 hr prior to | AKI stage | 48 hr prior to AKI stage | | |------------|-------------------------|-----------|----------------|-----------|--------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 4758.594 | 7144.793 | 4758.594 | 6494.385 | 4758.594 | 7105.260 | | average | 5442.318 | 6631.266 | 5442.318 | 6510.234 | 5442.318 | 7057.266 | | stdev | 2648.446 | 2799.175 | 2648.446 | 2861.268 | 2648.446 | 1597.203 | | p (t-test) | | 0.163 | | 0.230 | | 0.115 | | min | 96.224 | 915.589 | 96.224 | 915.589 | 96.224 | 5335.126 | | max | 16315.493 | 10815.095 | 16315.493 | 10815.095 | 16315.493 | 9395.400 | | n (Samp) | 99 | 11 | 99 | 10 | 99 | 7 | | n (Pat) | 99 | 11 | 99 | 10 | 99 | 7 | sCr only | | 0 hr prior toA | 0 hr prior toAKI stage | | AKI stage | 48 hr prior toAKI stage | | |------------|----------------|------------------------|-----------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 4979.471 | 7144.793 | 4979.471 | 7988.651 | 4979.471 | 5335.126 | | average | 5596.394 | 7145.511 | 5596.394 | 8031.881 | 5596.394 | 6046.142 | | stdev | 2845.854 | 2835.477 | 2845.854 | 2341.417 | 2845.854 | 2507.635 | | p (t-test) | | 0.232 | | 0.092 | | 0.786 | | min | 96.224 | 3600.034 | 96.224 | 5335.126 | 96.224 | 3970.792 | | max | 16576.982 | 10815.095 | 16576.982 | 10815.095 | 16576.982 | 8832.509 | | n (Samp) | 161 | 5 | 161 | 4 | 161 | 3 | | n (Pat) | 161 | 5 | 161 | 4 | 161 | 3 | UO only | | 0 hr prior toAKI stage | | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|------------------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 5129.158 | 7223.623 | 5129.158 | 6494.385 | 5129.158 | 7203.857 | | average | 5501.565 | 6649.209 | 5501.565 | 6119.015 | 5501.565 | 7344.290 | | stdev | 2324.764 | 2672.037 | 2324.764 | 2739.775 | 2324.764 | 1539.239 | | p (t-test) | | 0.191 | | 0.481 | | 0.060 | | min | 1580.497 | 915.589 | 1580.497 | 915.589 | 1580.497 | 5546.607 | | max | 16315.493 | 9395.400 | 16315.493 | 9395.400 | 16315.493 | 9395.400 | | n (Samp) | 84 | 8 | 84 | 8 | 84 | 6 | | n (Pat) | 84 | 8 | 84 | 8 | l 84 | 6 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.67 | 0.093 | 99 | 11 | 0.067 | | 24 hours | 0.66 | 0.098 | 99 | 10 | 0.102 | | 48 hours | 0.76 | 0.108 | 99 | 7 | 0.016 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.68 | 0.134 | 161 | 5 | 0.183 | | 24 hours | 0.80 | 0.134 | 161 | 4 | 0.025 | | 48 hours | 0.59 | 0.175 | 161 | 3 | 0.619 | UO only | Time prior | AUC | SE | nCohort 1 | nCohort 2 | p | |------------|------|-------|-----------|-----------|-------| | AKI stage | | | | | | | 0 hours | 0.70 | 0.107 | 84 | 8 | 0.064 | | 24 hours | 0.62 | 0.110 | 84 | 8 | 0.277 | | 48 hours | 0.78 | 0.113 | 84 | 6 | 0.012 | sCr or UO | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | |----------------------|-----------------|------|------|----------|-----|-------|---------| | 0 hours | 5499.6001 | 73% | 62% | 1 | | | | | | 5324.4963 | 82% | 59% | 2 | 0.0 | 0.0 | na | | | 3439.4811 | 91% | 20% | 3 | 1.6 | 0.3 | 9.4 | | | 6336.0501 | 55% | 71% | 4 | 3.4 | 0.8 | 14.9 | | | 6925.5816 | 55% | 81% | | | | | | | 8769.955 | 27% | 91% | | | | | Oct. 18, 2016 | 24 hours | 5499.6001 | 70% | 62% | 1 | I | I | | |----------|-----------|------|-----|---|-----|-----|------| | | 5324.4963 | 80% | 59% | 2 | 1.0 | 0.0 | 58.6 | | | 3943.9292 | 90% | 29% | 3 | 3.3 | 0.2 | 51.9 | | | 6336.0501 | 50% | 71% | 4 | 5.7 | 0.5 | 69.7 | | | 6925.5816 | 50% | 81% | | | | | | | 8769.955 | 30% | 91% | | | | | | 48 hours |
5724.4425 | 71% | 65% | 1 | | | | | | 5499.6001 | 86% | 62% | 2 | na | na | na | | | 5324.4963 | 100% | 59% | 3 | na | na | na | | | 6336.0501 | 57% | 71% | 4 | na | na | na | | | 6925.5816 | 57% | 81% | | | | | | | 8769.955 | 29% | 91% | | | | | sCr only | CI Omy | | | | | | | | |----------------------|-----------------|------|------|----------|-----|-------|---------| | Time prior AKI stage | Cutoff
value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 5324.4963 | 80% | 55% | 1 | | | | | | 5324.4963 | 80% | 55% | 2 | 0.0 | 0.0 | na | | | 3439.4811 | 100% | 19% | 3 | 1.0 | 0.0 | 55.6 | | | 6424.9768 | 60% | 70% | 4 | 3.1 | 0.2 | 46.4 | | | 7622.1289 | 40% | 80% | | | | | | | 8594.5677 | 40% | 90% | | | | | | 24 hours | 7073.5661 | 75% | 77% | 1 | | | | | | 5324.4963 | 100% | 55% | 2 | na | na | na | | | 5324.4963 | 100% | 55% | 3 | na | na | na | | | 6424.9768 | 75% | 70% | 4 | na | na | na | | | 7622.1289 | 50% | 80% | | | | | | | 8594.5677 | 50% | 90% | | | | | | 48 hours | 3956.1005 | 100% | 29% | 1 | | | | | | 3956.1005 | 100% | 29% | 2 | na | na | na | | | 3956.1005 | 100% | 29% | 3 | na | na | na | | | 6424.9768 | 33% | 70% | 4 | na | na | na | | | 7622.1289 | 33% | 80% | | · | | | | | 8594.5677 | 33% | 90% | | | | | UO only | | Cutoff | | | | | | | |----------------------|-----------|------|------|----------|-----|-------|---------| | Time prior AKI stage | value | sens | spec | Quartile | OR | 95% C | I of OR | | 0 hours | 5724.4425 | 75% | 63% | 1 | | | | | | 5499.6001 | 88% | 57% | 2 | 0.0 | 0.0 | na | | | 0 | 100% | 0% | 3 | 2.1 | 0.1 | 47.6 | | | 6336.0501 | 63% | 70% | 4 | 6.1 | 0.5 | 78.3 | | | 6925.5816 | 63% | 81% | | | | | | | 8769.955 | 25% | 90% | | | | | | 24 hours | 5499.6001 | 75% | 57% | 1 | | | | | | 3943.9292 | 88% | 25% | 2 | 0.0 | 0.0 | na | | | 0 | 100% | 0% | 3 | 1.0 | 0.1 | 8.6 | | | 6336.0501 | 50% | 70% | 4 | 2.2 | 0.4 | 11.7 | | | 6925.5816 | 50% | 81% | | | | | | | 8769.955 | 25% | 90% | | | | | | 48 hours | 5724.4425 | 83% | 63% | 1 | | | | | | 5724.4425 | 83% | 63% | 2 | na | na | na | | | 5499.6001 | 100% | 57% | 3 | na | na | na | | | 6336.0501 | 67% | 70% | 4 | na | na | na | | | 6925.5816 | 67% | 81% | | | | | | | 8769.955 | 33% | 90% | | | | | Matrix metalloproteinase-9 sCr or UO | | 0 hr prior to A | 0 hr prior to AKI stage | | AKI stage | 48 hr prior to AKI stage | | |------------|-----------------|-------------------------|----------|-----------|--------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 398.000 | 694.000 | 398.000 | 653.000 | 398.000 | 638.000 | | average | 684.421 | 1406.824 | 684.421 | 933.647 | 684.421 | 848.400 | | stdev | 1184.299 | 1741.414 | 1184.299 | 685.773 | 1184.299 | 576.178 | | p (t-test) | | 0.030 | | 0.400 | | 0.666 | | min | 33.200 | 315.000 | 33.200 | 315.000 | 33.200 | 315.000 | | max | 8903.000 | 7705.000 | 8903.000 | 2270.000 | 8903.000 | 1990.000 | | n (Samp) | 112 | 17 | 112 | 17 | 112 | 10 | | n (Pat) | 112 | 17 | 112 | 17 | 112 | 10 | sCr only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|----------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 424.500 | 778.500 | 424.500 | 692.500 | 424.500 | 694.000 | | average | 762.806 | 1029.500 | 762.806 | 1003.250 | 762.806 | 1132.200 | | stdev | 1189.773 | 560.743 | 1189.773 | 574.400 | 1189.773 | 668.691 | | p (t-test) | | 0.530 | | 0.571 | | 0.491 | | min | 33.200 | 460.000 | 33.200 | 460.000 | 33.200 | 566.000 | | max | 8903.000 | 1990.000 | 8903.000 | 1990.000 | 8903.000 | 1990.000 | | n (Samp) | 180 | 8 | 180 | 8 | 180 | 5 | | n (Pat) | 180 | 8 | 180 | 8 | 180 | 5 | UO only | | 0 hr prior toA | KI stage | 24 hr prior to | AKI stage | 48 hr prior toAKI stage | | |------------|----------------|----------|----------------|-----------|-------------------------|----------| | | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | Cohort 1 | Cohort 2 | | median | 376.000 | 691.000 | 376.000 | 585.000 | 376.000 | 585.000 | | average | 517.840 | 1551.364 | 517.840 | 839.182 | 517.840 | 601.143 | | stdev | 544.989 | 2144.086 | 544.989 | 720.722 | 544.989 | 263.688 | | p (t-test) | | 0.000 | | 0.078 | | 0.691 | | min | 33.200 | 315.000 | 33.200 | 315.000 | 33.200 | 315.000 | | max | 3830.000 | 7705.000 | 3830.000 | 2270.000 | 3830.000 | 1020.000 | | n (Samp) | 89 | 11 | 89 | 11 | 89 | 7 | | n (Pat) | 89 | 11 | 89 | 11 | 89 | 7 | sCr or UO | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.77 | 0.069 | 112 | 17 | 0.000 | | 24 hours | 0.71 | 0.074 | 112 | 17 | 0.005 | | 48 hours | 0.70 | 0.096 | 112 | 10 | 0.038 | sCr only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.75 | 0.101 | 180 | 8 | 0.012 | | 24 hours | 0.74 | 0.102 | 180 | 8 | 0.018 | | 48 hours | 0.77 | 0.125 | 180 | 5 | 0.029 | UO only | Time prior
AKI stage | AUC | SE | nCohort 1 | nCohort 2 | p | |-------------------------|------|-------|-----------|-----------|-------| | 0 hours | 0.78 | 0.085 | 89 | 11 | 0.001 | | 24 hours | 0.69 | 0.093 | 89 | 11 | 0.043 | | 48 hours | 0.66 | 0.116 | 89 | 7 | 0.169 | 1 #### METHODS AND COMPOSITIONS FOR DIAGNOSIS AND PROGNOSIS OF RENAL INJURY AND RENAL FAILURE # CROSS-REFERENCE TO RELATED APPLICATIONS This application is a divisional of application Ser. No. 13/128,392, filed Jun. 9, 2011, now U.S. Pat. No. 8,993,250, issued Mar. 31, 2015, which is a U.S. national phase application of International Application No. PCT/US2009/ 063906, filed Nov. 10, 2009, which designated the U.S. and claims the benefit of priority to U.S. Provisional Patent Application 61/117,168 filed Nov. 22, 2008; U.S. Provisional Patent Application 61/115,049 filed Nov. 15, 2008; U.S. Provisional Patent Application 61/113,074 filed Nov. 10, 2008; U.S. Provisional Patent Application 61/117,160 filed Nov. 22, 2008; U.S. Provisional Patent Application 61/117,158 filed Nov. 22, 2008; U.S. Provisional Patent Application 61/117,162 filed Nov. 22, 2008; U.S. Provisional Patent Application 61/117,163 filed Nov. 22, 2008; U.S. Provisional Patent Application 61/117,180 filed Nov. 22, 2008; U.S. Provisional Patent Application 61/117,178 filed Nov. 22, 2008; U.S. Provisional Patent Application 61/117,151 filed Nov. 22, 2008; and U.S. Provisional Patent Application 61/117,161 filed Nov. 22, 2008, each of which is hereby incorporated in its entirety including all tables, figures, and claims. #### SEQUENCE LISTING The instant application contains a Sequence Listing which has been submitted via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Mar. 30, 2015, is named AST6900DV_SeqListing.txt, and is 38 kilobytes in size. #### BACKGROUND OF THE INVENTION The following discussion of the background of the invention is merely provided to aid the reader in understanding the invention and is not admitted to describe or constitute prior art to the present invention. 40 The kidney is responsible for water and solute excretion from the body. Its functions include maintenance of acid- 45 base balance, regulation of electrolyte concentrations, control of blood volume, and regulation of blood pressure. As such, loss of kidney function through injury and/or disease results in substantial morbidity and mortality. A detailed discussion of renal injuries is provided in Harrison's Principles of Internal Medicine, 17^{th} Ed., McGraw Hill, New York, pages 1741-1830, which are hereby incorporated by reference in their entirety. Renal disease and/or injury may be acute or chronic. Acute and chronic kidney disease are described as follows (from Current Medical Diagnosis & Treatment 2008, 47th Ed, McGraw Hill, New York, pages 785-815, which are hereby incorporated by reference in their entirety): "Acute renal failure is worsening of renal function over hours to days, resulting in the retention of nitrogenous wastes (such as urea nitrogen) and creatinine in the blood. Retention of these substances is called azotemia. Chronic renal failure (chronic kidney disease) results from an abnormal loss of renal function over months to years". Acute renal failure (ARF, also known as acute kidney injury, or AKI) is an abrupt (typically detected within about 48 hours to 1 week) reduction in glomerular filtration. This 65 loss of filtration capacity results in retention of nitrogenous (urea and creatinine) and non-nitrogenous waste products 2 that are normally excreted by the kidney, a reduction in urine output, or both. It is reported that ARF complicates about 5% of hospital admissions, 4-15% of cardiopulmonary bypass surgeries, and up to 30% of intensive care admissions. ARF may be categorized as prerenal, intrinsic renal, or postrenal in causation. Intrinsic renal disease can be further divided into glomerular, tubular, interstitial, and vascular abnormalities. Major causes of ARF are described in the following table, which is adapted from the Merck Manual, 17th ed., Chapter 222, and which is hereby incorporated by reference in their entirety: | Туре | Risk Factors | |--|--| | Prerenal | _ | | ECF volume
depletion | Excessive diuresis, hemorrhage, GI losses, loss of intravascular fluid into the extravascular space (due to ascites, peritonitis, pancreatitis, or burns), loss of | | |
skin
and mucus membranes, renal salt- and water-wasting
states | | Low cardiac output | Cardiomyopathy, MI, cardiac tamponade, pulmonary
embolism, pulmonary hypertension, positive-pressure
mechanical ventilation | | Low systemic vascular resistance | Septic shock, liver failure, antihypertensive drugs | | Increased renal
vascular resistance | NSAIDs, cyclosporines, tacrolimus, hypercalcemia, anaphylaxis, anesthetics, renal artery obstruction, renal | | Decreased efferent
arteriolar tone (lead-
ing to decreased
GFR from reduced | vein thrombosis, sepsis, hepatorenal syndrome
ACE inhibitors or angiotensin II receptor blockers | | glomerular trans-
capillary pressure,
especially in
patients with
bilateral renal
artery stenosis)
Intrinsic Renal | _ | | Acute tubular | Ischemia (prolonged or severe prerenal state): sur- | | injury | gery,
hemorrhage, arterial or venous obstruction; Toxins:
NSAIDs, cyclosporines, tacrolimus, aminoglycosides,
foscarnet, ethylene glycol, hemoglobin, myoglobin,
ifosfamide, heavy metals, methotrexate, radiopaque
contrast agents, streptozotocin | | Acute glomeru-
lonephritis | ANCA-associated: Crescentic glomerulonephritis, polyarteritis nodosa, Wegener's granulomatosis; Anti-GBM glomerulonephritis: Goodpasture's syndrome; Immune-complex: Lupus glomerulonephritis, postinfectious glomerulonephritis, cryoglobulinemic | | Acute tubulointer-
stitial nephritis | glomerulonephritis Drug reaction (eg, β-lactams, NSAIDs, sulfonamides, ciprofloxacin, thiazide diuretics, furosemide, phenytoin, allopurinol, pyelonephritis, papillary necrosis | | Acute vascular
nephropathy
Infiltrative diseases
Postrenal | Vasculitis, malignant hypertension, thrombotic microangiopathies, scleroderma, atheroembolism Lymphoma, sarcoidosis, leukemia | | Tubular precipitation | Uric acid (tumor lysis), sulfonamides, triamterene, acyclovir, indinavir, methotrexate, ethylene glycol | | Ureteral obstruction | ingestion, myeloma protein, myoglobin
Intrinsic: Calculi, clots, sloughed renal tissue, fungus
ball, edema, malignancy, congenital defects; Extrin- | | | sic: Malignancy, retroperitoneal fibrosis, ureteral trauma | | Bladder
obstruction | during surgery or high impact injury
Mechanical: Benign prostatic hyperplasia, prostate
cancer, bladder cancer, urethral strictures, phimosis,
paraphimosis, urethral valves, obstructed indwelling | In the case of ischemic ARF, the course of the disease may be divided into four phases. During an initiation phase, which lasts hours to days, reduced perfusion of the kidney is evolving into injury. Glomerular ultrafiltration reduces, the flow of filtrate is reduced due to debris within the tubules, and back leakage of filtrate through injured epithelium occurs. Renal injury can be mediated during this phase by reperfusion of the kidney. Initiation is followed by an extension phase which is characterized by continued ischemic injury and inflammation and may involve endothelial damage and vascular congestion. During the maintenance phase, lasting from 1 to 2 weeks, renal cell injury occurs, and glomerular filtration and urine output reaches a minimum. A recovery phase can follow in which the renal epithelium is 15 repaired and GFR gradually recovers. Despite this, the survival rate of subjects with ARF may be as low as about Acute kidney injury caused by radiocontrast agents (also called contrast media) and other nephrotoxins such as 20 cyclosporine, antibiotics including aminoglycosides and anticancer drugs such as cisplatin manifests over a period of days to about a week. Contrast induced nephropathy (CIN, which is AKI caused by radiocontrast agents) is thought to be caused by intrarenal vasoconstriction (leading to ischemic injury) and from the generation of reactive oxygen species that are directly toxic to renal tubular epithelial cells. CIN classically presents as an acute (onset within 24-48 h) but reversible (peak 3-5 days, resolution within 1 week) rise in blood urea nitrogen and serum creatinine. A commonly reported criteria for defining and detecting AKI is an abrupt (typically within about 2-7 days or within a period of hospitalization) elevation of serum creatinine. Although the use of serum creatinine elevation to define and detect AKI is well established, the magnitude of the serum creatinine elevation and the time over which it is measured to define AKI varies considerably among publications. Traditionally, relatively large increases in serum creatinine such as 100%, 200%, an increase of at least 100% to a value over 40 2 mg/dL and other definitions were used to define AKI. However, the recent trend has been towards using smaller serum creatinine rises to define AKI. The relationship between serum creatinine rise, AKI and the associated health risks are reviewed in Praught and Shlipak, Curr Opin 45 Nephrol Hypertens 14:265-270, 2005 and Chertow et al, J Am Soc Nephrol 16: 3365-3370, 2005, which, with the references listed therein, are hereby incorporated by reference in their entirety. As described in these publications, acute worsening renal function (AKI) and increased risk of 50 death and other detrimental outcomes are now known to be associated with very small increases in serum creatinine. These increases may be determined as a relative (percent) value or a nominal value. Relative increases in serum creatinine as small as 20% from the pre-injury value have 55 been reported to indicate acutely worsening renal function (AKI) and increased health risk, but the more commonly reported value to define AKI and increased health risk is a relative increase of at least 25%. Nominal increases as small as 0.3 mg/dL, 0.2 mg/dL or even 0.1 mg/dL have been 60 reported to indicate worsening renal function and increased risk of death. Various time periods for the serum creatinine to rise to these threshold values have been used to define AKI, for example, ranging from 2 days, 3 days, 7 days, or a variable period defined as the time the patient is in the 65 hospital or intensive care unit. These studies indicate there is not a particular threshold serum creatinine rise (or time 4 period for the rise) for worsening renal function or AKI, but rather a continuous increase in risk with increasing magnitude of serum creatinine rise. One study (Lassnigg et all, J Am Soc Nephrol 15:1597-1605, 2004, hereby incorporated by reference in its entirety) investigated both increases and decreases in serum creatinine. Patients with a mild fall in serum creatinine of -0.1 to -0.3 mg/dL following heart surgery had the lowest mortality rate. Patients with a larger fall in serum creatinine (more than or equal to -0.4 mg/dL) or any increase in serum creatinine had a larger mortality rate. These findings caused the authors to conclude that even very subtle changes in renal function (as detected by small creatinine changes within 48 hours of surgery) seriously effect patient's outcomes. In an effort to reach consensus on a unified classification system for using serum creatinine to define AKI in clinical trials and in clinical practice, Bellomo et al., Crit Care. 8(4):R204-12, 2004, which is hereby incorporated by reference in its entirety, proposes the following classifications for stratifying AKI patients: "Risk": serum creatinine increased 1.5 fold from baseline OR urine production of <0.5 ml/kg body weight/hr for 6 hours: "Injury": serum creatinine increased 2.0 fold from baseline OR urine production<0.5 ml/kg/hr for 12 h; "Failure": serum creatinine increased 3.0 fold from baseline OR creatinine>355 μmol/l (with a rise of >44) or urine output below 0.3 ml/kg/hr for 24 h or anuria for at least 12 hours: And included two clinical outcomes: "Loss": persistent need for renal replacement therapy for more than four weeks. "ESRD": end stage renal disease—the need for dialysis 55 for more than 3 months. These criteria are called the RIFLE criteria, which provide a useful clinical tool to classify renal status. As discussed in Kellum, *Crit. Care Med.* 36: S141-45, 2008 and Ricci et al., *Kidney Int.* 73, 538-546, 2008, each hereby incorporated by reference in its entirety, the RIFLE criteria provide a uniform definition of AKI which has been validated in numerous studies. More recently, Mehta et al., *Crit. Care* 11:R31 (doi: 10.1186.cc5713), 2007, hereby incorporated by reference in its entirety, proposes the following similar classifications for stratifying AKI patients, which have been modified from RIFLE: "Stage I": increase in serum creatinine of more than or equal to 0.3 mg/dL ($\geq 26.4 \text{ }\mu\text{mol/L}$) or increase to more than or equal to 150% (1.5-fold) from baseline OR urine output less than 0.5 mL/kg per hour for more than 6 hours; "Stage II": increase in serum creatinine to more than 200% (>2-fold) from baseline OR urine output less than 0.5 mL/kg per hour for more than 12 hours; "Stage III": increase in serum creatinine to more than 300% (>3-fold) from baseline OR serum creatinine≥354 µmol/L accompanied by an acute increase of at least 44 µmol/L OR urine output less than 0.3 mL/kg per hour for 24 hours or anuria for 12 hours. The CIN Consensus Working Panel (McCollough et al, Rev Cardiovasc Med. 2006; 7(4):177-197, hereby incorporated by reference in its entirety) uses a serum creatinine rise of 25% to define Contrast induced nephropathy (which is a type of AKI). Although various groups propose slightly different criteria for using serum creatinine to detect AKI, the consensus is that small changes in serum creatinine, such as 0.3 mg/dL or 25%, are sufficient to detect AKI (worsening renal function) and that the magnitude of the serum creatinine change is an indicator of the severity of the AKI and mortality risk. Although serial measurement of serum creatinine over a period of days is an accepted method of detecting and 5 diagnosing AKI and is considered one of the most important tools to
evaluate AKI patients, serum creatinine is generally regarded to have several limitations in the diagnosis, assessment and monitoring of AKI patients. The time period for serum creatinine to rise to values (e.g., a 0.3 mg/dL or 25% rise) considered diagnostic for AKI can be 48 hours or longer depending on the definition used. Since cellular injury in AKI can occur over a period of hours, serum creatinine elevations detected at 48 hours or longer can be a late indicator of injury, and relying on serum creatinine can 15 thus delay diagnosis of AKI. Furthermore, serum creatinine is not a good indicator of the exact kidney status and treatment needs during the most acute phases of AKI when kidney function is changing rapidly. Some patients with AKI will recover fully, some will need dialysis (either short term 20 or long term) and some will have other detrimental outcomes including death, major adverse cardiac events and chronic kidney disease. Because serum creatinine is a marker of filtration rate, it does not differentiate between the causes of AKI (pre-renal, intrinsic renal, post-renal obstruc- 25 tion, atheroembolic, etc) or the category or location of injury in intrinsic renal disease (for example, tubular, glomerular or interstitial in origin). Urine output is similarly limited, Knowing these things can be of vital importance in managing and treating patients with AKI. These limitations underscore the need for better methods to detect and assess AKI, particularly in the early and subclinical stages, but also in later stages when recovery and repair of the kidney can occur. Furthermore, there is a need to better identify patients who are at risk of having an AKI. ³⁵ #### BRIEF SUMMARY OF THE INVENTION It is an object of the invention to provide methods and compositions for evaluating renal function in a subject. As 40 described herein, measurement of one or more markers selected from the group consisting of Clusterin, Heart-type fatty acid binding protein, Hepatocyte growth factor, Interferon gamma, Interleukin-12 subunit beta, Interleukin-16, Interleukin-2, 72 kDa type IV collagenase, Matrix metallo- 45 proteinase-9, Midkine, and Serum amyloid P-component (collectively referred to herein as "kidney injury markers, and individually as a "kidney injury marker") can be used for diagnosis, prognosis, risk stratification, staging, monitoring, categorizing and determination of further diagnosis 50 and treatment regimens in subjects suffering or at risk of suffering from an injury to renal function, reduced renal function, and/or acute renal failure (also called acute kidney injury). These kidney injury markers may be used, individually or 55 in panels comprising a plurality of kidney injury markers, for risk stratification (that is, to identify subjects at risk for a future injury to renal function, for future progression to reduced renal function, for future progression to ARF, for future improvement in renal function, etc.); for diagnosis of 60 existing disease (that is, to identify subjects who have suffered an injury to renal function, who have progressed to reduced renal function, who have progressed to ARF, etc.); for monitoring for deterioration or improvement of renal function; and for predicting a future medical outcome, such 65 as improved or worsening renal function, a decreased or increased mortality risk, a decreased or increased risk that a 6 subject will require renal replacement therapy (i.e., hemodialysis, peritoneal dialysis, hemofiltration, and/or renal transplantation, a decreased or increased risk that a subject will recover from an injury to renal function, a decreased or increased risk that a subject will recover from ARF, a decreased or increased risk that a subject will progress to end stage renal disease, a decreased or increased risk that a subject will progress to chronic renal failure, a decreased or increased risk that a subject will suffer rejection of a transplanted kidney, etc. In a first aspect, the present invention relates to methods for evaluating renal status in a subject. These methods comprise performing an assay method that is configured to detect one or more kidney injury markers of the present invention in a body fluid sample obtained from the subject. The assay result(s), for example a measured concentration of one or more markers selected from the group consisting of Clusterin, Heart-type fatty acid binding protein, Hepatocyte growth factor, Interferon gamma, Interleukin-12 subunit beta, Interleukin-16, Interleukin-2, 72 kDa type IV collagenase, Matrix metalloproteinase-9, Midkine, and Serum amyloid P-component is/are then correlated to the renal status of the subject. This correlation to renal status may include correlating the assay result(s) to one or more of risk stratification, diagnosis, prognosis, staging, classifying and monitoring of the subject as described herein. Thus, the present invention utilizes one or more kidney injury markers of the present invention for the evaluation of renal injury. In certain embodiments, the methods for evaluating renal status described herein are methods for risk stratification of the subject; that is, assigning a likelihood of one or more future changes in renal status to the subject. In these embodiments, the assay result(s) is/are correlated to one or more such future changes. The following are preferred risk stratification embodiments. In preferred risk stratification embodiments, these methods comprise determining a subject's risk for a future injury to renal function, and the assay result(s) is/are correlated to a likelihood of such a future injury to renal function. For example, the measured concentration(s) may each be compared to a threshold value. For a "positive going" kidney injury marker, an increased likelihood of suffering a future injury to renal function is assigned to the subject when the measured concentration is above the threshold, relative to a likelihood assigned when the measured concentration is below the threshold. For a "negative going" kidney injury marker, an increased likelihood of suffering a future injury to renal function is assigned to the subject when the measured concentration is below the threshold, relative to a likelihood assigned when the measured concentration is above the threshold. In other preferred risk stratification embodiments, these methods comprise determining a subject's risk for future reduced renal function, and the assay result(s) is/are correlated to a likelihood of such reduced renal function. For example, the measured concentrations may each be compared to a threshold value. For a "positive going" kidney injury marker, an increased likelihood of suffering a future reduced renal function is assigned to the subject when the measured concentration is above the threshold, relative to a likelihood assigned when the measured concentration is below the threshold. For a "negative going" kidney injury marker, an increased likelihood of future reduced renal function is assigned to the subject when the measured concentration is below the threshold, relative to a likelihood assigned when the measured concentration is above the threshold. In still other preferred risk stratification embodiments, these methods comprise determining a subject's likelihood for a future improvement in renal function, and the assay result(s) is/are correlated to a likelihood of such a future improvement in renal function. For example, the measured concentration(s) may each be compared to a threshold value. For a "positive going" kidney injury marker, an increased likelihood of a future improvement in renal function is assigned to the subject when the measured concentration is below the threshold, relative to a likelihood assigned when the measured concentration is above the threshold. For a "negative going" kidney injury marker, an increased likelihood of a future improvement in renal function is assigned to the subject when the measured concentration is above the 15 threshold, relative to a likelihood assigned when the measured concentration is below the threshold. In yet other preferred risk stratification embodiments, these methods comprise determining a subject's risk for progression to ARF, and the result(s) is/are correlated to a 20 likelihood of such progression to ARF. For example, the measured concentration(s) may each be compared to a threshold value. For a "positive going" kidney injury marker, an increased likelihood of progression to ARF is assigned to the subject when the measured concentration is 25 above the threshold, relative to a likelihood assigned when the measured concentration is below the threshold. For a "negative going" kidney injury marker, an increased likelihood of progression to ARF is assigned to the subject when the measured concentration is below the threshold, relative to a likelihood assigned when the measured concentration is above the threshold. And in other preferred risk stratification embodiments, these methods comprise determining a subject's outcome 35 risk, and the assay result(s) is/are correlated to a likelihood of the occurrence of a clinical outcome related to a renal injury suffered by the subject. For example, the measured concentration(s) may each be compared to a threshold value. For a "positive going" kidney injury marker, an increased 40 likelihood of one or more of: acute kidney injury, progression to a worsening stage of AKI, mortality, a requirement for renal replacement therapy, a requirement for withdrawal of renal toxins, end stage renal disease, heart failure, stroke, myocardial infarction, progression to chronic kidney dis- 45 ease, etc., is assigned to the subject when the measured concentration is above the threshold, relative to a likelihood assigned when the measured concentration is below the threshold. For a "negative going" kidney injury marker, an increased likelihood of one or more of: acute kidney injury, 50 progression to a worsening
stage of AKI, mortality, a requirement for renal replacement therapy, a requirement for withdrawal of renal toxins, end stage renal disease, heart failure, stroke, myocardial infarction, progression to chronic kidney disease, etc., is assigned to the subject when the 55 measured concentration is below the threshold, relative to a likelihood assigned when the measured concentration is above the threshold. In such risk stratification embodiments, preferably the likelihood or risk assigned is that an event of interest is more 60 or less likely to occur within 180 days of the time at which the body fluid sample is obtained from the subject. In particularly preferred embodiments, the likelihood or risk assigned relates to an event of interest occurring within a shorter time period such as 18 months, 120 days, 90 days, 60 65 days, 45 days, 30 days, 21 days, 14 days, 7 days, 5 days, 96 hours, 72 hours, 48 hours, 36 hours, 24 hours, 12 hours, or 8 less. A risk at 0 hours of the time at which the body fluid sample is obtained from the subject is equivalent to diagnosis of a current condition. In preferred risk stratification embodiments, the subject is selected for risk stratification based on the pre-existence in the subject of one or more known risk factors for prerenal, intrinsic renal, or postrenal ARF. For example, a subject undergoing or having undergone major vascular surgery, coronary artery bypass, or other cardiac surgery; a subject having pre-existing congestive heart failure, preeclampsia, eclampsia, diabetes mellitus, hypertension, coronary artery disease, proteinuria, renal insufficiency, glomerular filtration below the normal range, cirrhosis, serum creatinine above the normal range, or sepsis; or a subject exposed to NSAIDs, cyclosporines, tacrolimus, aminoglycosides, foscarnet, ethylene glycol, hemoglobin, myoglobin, ifosfamide, heavy metals, methotrexate, radiopaque contrast agents, or streptozotocin are all preferred subjects for monitoring risks according to the methods described herein. This list is not meant to be limiting. By "pre-existence" in this context is meant that the risk factor exists at the time the body fluid sample is obtained from the subject. In particularly preferred embodiments, a subject is chosen for risk stratification based on an existing diagnosis of injury to renal function, reduced renal function, or ARF. In other embodiments, the methods for evaluating renal status described herein are methods for diagnosing a renal injury in the subject; that is, assessing whether or not a subject has suffered from an injury to renal function, reduced renal function, or ARF. In these embodiments, the assay result(s), for example a measured concentration of one or more markers selected from the group consisting of Clusterin, Heart-type fatty acid binding protein, Hepatocyte growth factor, Interferon gamma, Interleukin-12 subunit beta, Interleukin-16, Interleukin-2, 72 kDa type IV collagenase, Matrix metalloproteinase-9, Midkine, and Serum amyloid P-component is/are correlated to the occurrence or nonoccurrence of a change in renal status. The following are preferred diagnostic embodiments. In preferred diagnostic embodiments, these methods comprise diagnosing the occurrence or nonoccurrence of an injury to renal function, and the assay result(s) is/are correlated to the occurrence or nonoccurrence of such an injury. For example, each of the measured concentration(s) may be compared to a threshold value. For a positive going marker, an increased likelihood of the occurrence of an injury to renal function is assigned to the subject when the measured concentration is above the threshold (relative to the likelihood assigned when the measured concentration is below the threshold); alternatively, when the measured concentration is below the threshold, an increased likelihood of the nonoccurrence of an injury to renal function may be assigned to the subject (relative to the likelihood assigned when the measured concentration is above the threshold). For a negative going marker, an increased likelihood of the occurrence of an injury to renal function is assigned to the subject when the measured concentration is below the threshold (relative to the likelihood assigned when the measured concentration is above the threshold); alternatively, when the measured concentration is above the threshold, an increased likelihood of the nonoccurrence of an injury to renal function may be assigned to the subject (relative to the likelihood assigned when the measured concentration is below the threshold). In other preferred diagnostic embodiments, these methods comprise diagnosing the occurrence or nonoccurrence of reduced renal function, and the assay result(s) is/are corre- lated to the occurrence or nonoccurrence of an injury causing reduced renal function. For example, each of the measured concentration(s) may be compared to a threshold value. For a positive going marker, an increased likelihood of the occurrence of an injury causing reduced renal function 5 is assigned to the subject when the measured concentration is above the threshold (relative to the likelihood assigned when the measured concentration is below the threshold); alternatively, when the measured concentration is below the threshold, an increased likelihood of the nonoccurrence of an injury causing reduced renal function may be assigned to the subject (relative to the likelihood assigned when the measured concentration is above the threshold). For a negative going marker, an increased likelihood of the occurrence of an injury causing reduced renal function is assigned to the 15 subject when the measured concentration is below the threshold (relative to the likelihood assigned when the measured concentration is above the threshold); alternatively, when the measured concentration is above the threshold, an increased likelihood of the nonoccurrence of an 20 injury causing reduced renal function may be assigned to the subject (relative to the likelihood assigned when the measured concentration is below the threshold). In yet other preferred diagnostic embodiments, these methods comprise diagnosing the occurrence or nonoccur- 25 rence of ARF, and the assay result(s) is/are correlated to the occurrence or nonoccurrence of an injury causing ARF. For example, each of the measured concentration(s) may be compared to a threshold value. For a positive going marker, an increased likelihood of the occurrence of ARF is assigned 30 to the subject when the measured concentration is above the threshold (relative to the likelihood assigned when the measured concentration is below the threshold); alternatively, when the measured concentration is below the threshold, an increased likelihood of the nonoccurrence of ARF 35 may be assigned to the subject (relative to the likelihood assigned when the measured concentration is above the threshold). For a negative going marker, an increased likelihood of the occurrence of ARF is assigned to the subject (relative to the likelihood assigned when the measured concentration is above the threshold); alternatively, when the measured concentration is above the threshold, an increased likelihood of the nonoccurrence of ARF may be assigned to the subject (relative to the likelihood assigned 45 when the measured concentration is below the threshold). In still other preferred diagnostic embodiments, these methods comprise diagnosing a subject as being in need of renal replacement therapy, and the assay result(s) is/are correlated to a need for renal replacement therapy. For 50 example, each of the measured concentration(s) may be compared to a threshold value. For a positive going marker, an increased likelihood of the occurrence of an injury creating a need for renal replacement therapy is assigned to the subject when the measured concentration is above the 55 threshold (relative to the likelihood assigned when the measured concentration is below the threshold); alternatively, when the measured concentration is below the threshold, an increased likelihood of the nonoccurrence of an injury creating a need for renal replacement therapy may be 60 assigned to the subject (relative to the likelihood assigned when the measured concentration is above the threshold). For a negative going marker, an increased likelihood of the occurrence of an injury creating a need for renal replacement therapy is assigned to the subject when the measured con- 65 centration is below the threshold (relative to the likelihood assigned when the measured concentration is above the 10 threshold); alternatively, when the measured concentration is above the threshold, an increased likelihood of the nonoccurrence of an injury creating a need for renal replacement therapy may be assigned to the subject (relative to the likelihood assigned when the measured concentration is below the threshold). In still other preferred diagnostic embodiments, these methods comprise diagnosing a subject as being in need of renal transplantation, and the assay result (s0 is/are correlated to a need for renal transplantation. For example, each of the measured concentration(s) may be compared to a threshold value. For a positive going marker, an increased likelihood of the occurrence of an injury creating a need for renal transplantation is assigned to the subject when the measured concentration is above the threshold (relative to the likelihood assigned when the measured concentration is below the threshold); alternatively, when the measured concentration is below the threshold, an increased likelihood of the nonoccurrence of an injury creating a need for renal transplantation may be assigned to the subject (relative to the likelihood assigned when the measured concentration is above the threshold). For a negative going marker, an increased likelihood of the occurrence of an injury creating a need for renal transplantation is assigned to the subject when the measured
concentration is below the threshold (relative to the likelihood assigned when the measured concentration is above the threshold); alternatively, when the measured concentration is above the threshold, an increased likelihood of the nonoccurrence of an injury creating a need for renal transplantation may be assigned to the subject (relative to the likelihood assigned when the measured concentration is below the threshold). In still other embodiments, the methods for evaluating renal status described herein are methods for monitoring a renal injury in the subject; that is, assessing whether or not renal function is improving or worsening in a subject who has suffered from an injury to renal function, reduced renal function, or ARF. In these embodiments, the assay result(s), for example a measured concentration of one or more when the measured concentration is below the threshold 40 markers selected from the group consisting of Clusterin, Heart-type fatty acid binding protein, Hepatocyte growth factor, Interferon gamma, Interleukin-12 subunit beta, Interleukin-16, Interleukin-2, 72 kDa type IV collagenase, Matrix metalloproteinase-9, Midkine, and Serum amyloid P-component is/are correlated to the occurrence or nonoccurrence of a change in renal status. The following are preferred monitoring embodiments. > In preferred monitoring embodiments, these methods comprise monitoring renal status in a subject suffering from an injury to renal function, and the assay result(s) is/are correlated to the occurrence or nonoccurrence of a change in renal status in the subject. For example, the measured concentration(s) may be compared to a threshold value. For a positive going marker, when the measured concentration is above the threshold, a worsening of renal function may be assigned to the subject; alternatively, when the measured concentration is below the threshold, an improvement of renal function may be assigned to the subject. For a negative going marker, when the measured concentration is below the threshold, a worsening of renal function may be assigned to the subject; alternatively, when the measured concentration is above the threshold, an improvement of renal function may be assigned to the subject. > In other preferred monitoring embodiments, these methods comprise monitoring renal status in a subject suffering from reduced renal function, and the assay result(s) is/are correlated to the occurrence or nonoccurrence of a change in renal status in the subject. For example, the measured concentration(s) may be compared to a threshold value. For a positive going marker, when the measured concentration is above the threshold, a worsening of renal function may be assigned to the subject; alternatively, when the measured 5 concentration is below the threshold, an improvement of renal function may be assigned to the subject. For a negative going marker, when the measured concentration is below the threshold, a worsening of renal function may be assigned to the subject; alternatively, when the measured concentration 10 is above the threshold, an improvement of renal function may be assigned to the subject. In yet other preferred monitoring embodiments, these methods comprise monitoring renal status in a subject suffering from acute renal failure, and the assay result(s) 15 is/are correlated to the occurrence or nonoccurrence of a change in renal status in the subject. For example, the measured concentration(s) may be compared to a threshold value. For a positive going marker, when the measured concentration is above the threshold, a worsening of renal 20 function may be assigned to the subject; alternatively, when the measured concentration is below the threshold, an improvement of renal function may be assigned to the subject. For a negative going marker, when the measured concentration is below the threshold, a worsening of renal 25 function may be assigned to the subject; alternatively, when the measured concentration is above the threshold, an improvement of renal function may be assigned to the subject. In other additional preferred monitoring embodiments, 30 these methods comprise monitoring renal status in a subject at risk of an injury to renal function due to the pre-existence of one or more known risk factors for prerenal, intrinsic renal, or postrenal ARF, and the assay result(s) is/are correlated to the occurrence or nonoccurrence of a change in 35 renal status in the subject. For example, the measured concentration(s) may be compared to a threshold value. For a positive going marker, when the measured concentration is above the threshold, a worsening of renal function may be assigned to the subject; alternatively, when the measured 40 concentration is below the threshold, an improvement of renal function may be assigned to the subject. For a negative going marker, when the measured concentration is below the threshold, a worsening of renal function may be assigned to the subject; alternatively, when the measured concentration 45 is above the threshold, an improvement of renal function may be assigned to the subject. In still other embodiments, the methods for evaluating renal status described herein are methods for classifying a renal injury in the subject; that is, determining whether a 50 renal injury in a subject is prerenal, intrinsic renal, or postrenal; and/or further subdividing these classes into subclasses such as acute tubular injury, acute glomerulonephritis acute tubulointerstitial nephritis, acute vascular nephropathy, or infiltrative disease; and/or assigning a likelihood 55 that a subject will progress to a particular RIFLE stage. In these embodiments, the assay result(s), for example a measured concentration of one or more markers selected from the group consisting of Clusterin, Heart-type fatty acid binding protein, Hepatocyte growth factor, Interferon 60 gamma, Interleukin-12 subunit beta, Interleukin-16, Interleukin-2, 72 kDa type IV collagenase, Matrix metalloproteinase-9, Midkine, and Serum amyloid P-component is/are correlated to a particular class and/or subclass. The following are preferred classification embodiments. In preferred classification embodiments, these methods comprise determining whether a renal injury in a subject is 12 prerenal, intrinsic renal, or postrenal; and/or further subdividing these classes into subclasses such as acute tubular injury, acute glomerulonephritis acute tubulointerstitial nephritis, acute vascular nephropathy, or infiltrative disease; and/or assigning a likelihood that a subject will progress to a particular RIFLE stage, and the assay result(s) is/are correlated to the injury classification for the subject. For example, the measured concentration may be compared to a threshold value, and when the measured concentration is above the threshold, a particular classification is assigned; alternatively, when the measured concentration is below the threshold, a different classification may be assigned to the subject. A variety of methods may be used by the skilled artisan to arrive at a desired threshold value for use in these methods. For example, the threshold value may be determined from a population of normal subjects by selecting a concentration representing the 75th, 85th, 90th, 95th, or 99th percentile of a kidney injury marker measured in such normal subjects. Alternatively, the threshold value may be determined from a "diseased" population of subjects, e.g., those suffering from an injury or having a predisposition for an injury (e.g., progression to ARF or some other clinical outcome such as death, dialysis, renal transplantation, etc.), by selecting a concentration representing the 75^{th} , 85^{th} , 90^{th} 95th, or 99th percentile of a kidney injury marker measured in such subjects. In another alternative, the threshold value may be determined from a prior measurement of a kidney injury marker in the same subject; that is, a temporal change in the level of a kidney injury marker in the subject may be used to assign risk to the subject. The foregoing discussion is not meant to imply, however, that the kidney injury markers of the present invention must be compared to corresponding individual thresholds. Methods for combining assay results can comprise the use of multivariate logistical regression, loglinear modeling, neural network analysis, n-of-m analysis, decision tree analysis, calculating ratios of markers, etc. This list is not meant to be limiting. In these methods, a composite result which is determined by combining individual markers may be treated as if it is itself a marker; that is, a threshold may be determined for the composite result as described herein for individual markers, and the composite result for an individual patient compared to this threshold. The ability of a particular test to distinguish two populations can be established using ROC analysis. For example, ROC curves established from a "first" subpopulation which is predisposed to one or more future changes in renal status, and a "second" subpopulation which is not so predisposed can be used to calculate a ROC curve, and the area under the curve provides a measure of the quality of the test. Preferably, the tests described herein provide a ROC curve area greater than 0.5, preferably at least 0.6, more preferably 0.7, still more preferably at least 0.8, even more preferably at least 0.9, and most preferably at least 0.95. In certain aspects, the measured concentration of one or more kidney injury markers, or a composite of such markers, may be treated as continuous variables. For example, any particular concentration can be converted into a corresponding probability of a future reduction in renal function for the subject, the occurrence of an injury, a classification, etc. In yet another alternative, a threshold that can provide an acceptable level of specificity and sensitivity in separating a population of subjects into "bins" such as a "first" subpopulation
(e.g., which is predisposed to one or more future changes in renal status, the occurrence of an injury, a classification, etc.) and a "second" subpopulation which is not so predisposed. A threshold value is selected to separate this first and second population by one or more of the following measures of test accuracy: an odds ratio greater than 1, preferably at least about 2 or more or about 0.5 or less, more preferably at least about 3 5 or more or about 0.33 or less, still more preferably at least about 4 or more or about 0.25 or less, even more preferably at least about 5 or more or about 0.2 or less, and most preferably at least about 10 or more or about 0.1 or less; a specificity of greater than 0.5, preferably at least about 0.6, 10 more preferably at least about 0.7, still more preferably at least about 0.8, even more preferably at least about 0.9 and most preferably at least about 0.95, with a corresponding sensitivity greater than 0.2, preferably greater than about 0.3, more preferably greater than about 0.4, still more 15 preferably at least about 0.5, even more preferably about 0.6, yet more preferably greater than about 0.7, still more preferably greater than about 0.8, more preferably greater than about 0.9, and most preferably greater than about 0.95; a sensitivity of greater than 0.5, preferably at least about 0.6, 20 more preferably at least about 0.7, still more preferably at least about 0.8, even more preferably at least about 0.9 and most preferably at least about 0.95, with a corresponding specificity greater than 0.2, preferably greater than about 0.3, more preferably greater than about 0.4, still more 25 preferably at least about 0.5, even more preferably about 0.6, yet more preferably greater than about 0.7, still more preferably greater than about 0.8, more preferably greater than about 0.9, and most preferably greater than about 0.95; at least about 75% sensitivity, combined with at least about 30 75% specificity; a positive likelihood ratio (calculated as sensitivity/(1-specificity)) of greater than 1, at least about 2, more preferably at least about 3, still more preferably at least about 5, and most preferably at least about 10; or a negative likelihood ratio (calculated as (1-sensitivity)/ specificity) of less than 1, less than or equal to about 0.5, more preferably less than or equal to about 0.3, and most preferably less than or equal to about 0.1. The term "about" in the context of any of the above 40 measurements refers to $\pm -5\%$ of a given measurement. Multiple thresholds may also be used to assess renal status in a subject. For example, a "first" subpopulation which is predisposed to one or more future changes in renal status, the occurrence of an injury, a classification, etc., and a 45 "second" subpopulation which is not so predisposed can be combined into a single group. This group is then subdivided into three or more equal parts (known as tertiles, quartiles, quintiles, etc., depending on the number of subdivisions). An odds ratio is assigned to subjects based on which subdivision 50 they fall into. If one considers a tertile, the lowest or highest tertile can be used as a reference for comparison of the other subdivisions. This reference subdivision is assigned an odds ratio of 1. The second tertile is assigned an odds ratio that is relative to that first tertile. That is, someone in the second 55 relates to devices and kits for performing the methods tertile might be 3 times more likely to suffer one or more future changes in renal status in comparison to someone in the first tertile. The third tertile is also assigned an odds ratio that is relative to that first tertile. In certain embodiments, the assay method is an immu- 60 noassay. Antibodies for use in such assays will specifically bind a full length kidney injury marker of interest, and may also bind one or more polypeptides that are "related" thereto, as that term is defined hereinafter. Numerous immunoassay formats are known to those of skill in the art. Preferred body fluid samples are selected from the group consisting of urine, blood, serum, saliva, tears, and plasma. 14 The foregoing method steps should not be interpreted to mean that the kidney injury marker assay result(s) is/are used in isolation in the methods described herein. Rather, additional variables or other clinical indicia may be included in the methods described herein. For example, a risk stratification, diagnostic, classification, monitoring, etc. method may combine the assay result(s) with one or more variables measured for the subject selected from the group consisting of demographic information (e.g., weight, sex, age, race), medical history (e.g., family history, type of surgery, preexisting disease such as aneurism, congestive heart failure, preeclampsia, eclampsia, diabetes mellitus, hypertension, coronary artery disease, proteinuria, renal insufficiency, or sepsis, type of toxin exposure such as NSAIDs, cyclosporines, tacrolimus, aminoglycosides, foscarnet, ethylene glycol, hemoglobin, myoglobin, ifosfamide, heavy metals, methotrexate, radiopaque contrast agents, or streptozotocin), clinical variables (e.g., blood pressure, temperature, respiration rate), risk scores (APACHE score, PRE-DICT score, TIMI Risk Score for UA/NSTEMI. Framingham Risk Score), a glomerular filtration rate, an estimated glomerular filtration rate, a urine production rate, a serum or plasma creatinine concentration, a urine creatinine concentration, a fractional excretion of sodium, a urine sodium concentration, a urine creatinine to serum or plasma creatinine ratio, a urine specific gravity, a urine osmolality, a urine urea nitrogen to plasma urea nitrogen ratio, a plasma BUN to creatnine ratio, a renal failure index calculated as urine sodium/(urine creatinine/plasma creatinine), a serum or plasma neutrophil gelatinase (NGAL) concentration, a urine NGAL concentration, a serum or plasma cystatin C concentration, a serum or plasma cardiac troponin concentration, a serum or plasma BNP concentration, a serum or plasma NTproBNP concentration, and a serum or plasma proBNP concentration. Other measures of renal function which may be combined with one or more kidney injury marker assay result(s) are described hereinafter and in Harrison's Principles of Internal Medicine, 17th Ed., McGraw Hill, New York, pages 1741-1830, and Current Medical Diagnosis & Treatment 2008, 47th Ed, McGraw Hill, New York, pages 785-815, each of which are hereby incorporated by reference in their entirety. When more than one marker is measured, the individual markers may be measured in samples obtained at the same time, or may be determined from samples obtained at different (e.g., an earlier or later) times. The individual markers may also be measured on the same or different body fluid samples. For example, one kidney injury marker may be measured in a serum or plasma sample and another kidney injury marker may be measured in a urine sample. In addition, assignment of a likelihood may combine an individual kidney injury marker assay result with temporal changes in one or more additional variables. In various related aspects, the present invention also described herein. Suitable kits comprise reagents sufficient for performing an assay for at least one of the described kidney injury markers, together with instructions for performing the described threshold comparisons. In certain embodiments, reagents for performing such assays are provided in an assay device, and such assay devices may be included in such a kit. Preferred reagents can comprise one or more solid phase antibodies, the solid phase antibody comprising antibody that detects the intended biomarker target(s) bound to a solid support. In the case of sandwich immunoassays, such reagents can also include one or more detectably labeled antibodies, the detectably labeled antibody comprising antibody that detects the intended biomarker target(s) bound to a detectable label. Additional optional elements that may be provided as part of an assay device are described hereinafter. Detectable labels may include molecules that are themselves detectable (e.g., fluorescent moieties, electrochemical labels, ecl (electrochemical luminescence) labels, metal chelates, colloidal metal particles, etc.) as well as molecules that may be indirectly detected by production of a detectable reaction product (e.g., enzymes such as horseradish peroxidase, alkaline phosphatase, etc.) or through the use of a specific binding molecule which itself may be detectable (e.g., a labeled antibody that binds to the second antibody, biotin, digoxigenin, maltose, oligohistidine, 2,4-dintrobenzene, phenylarsenate, ssDNA, dsDNA, etc.). Generation of a signal from the signal development element can be performed using various optical, acoustical, and electrochemical methods well known in the art. Examples of detection modes include fluorescence, radiochemical detection, reflectance, absorbance, amperometry, conductance, impedance, interferometry, ellipsometry, etc. In certain of these methods, the solid phase antibody is coupled to a transducer (e.g., a diffraction grating, electrochemical sensor, etc) for generation of a signal, while in others, a signal is generated by a transducer that is spatially separate from the solid phase antibody (e.g., a fluorometer that employs an excitation light source and an optical detector). This list is not meant to be limiting. Antibodybased biosensors may also be employed to determine the presence or amount of analytes that optionally eliminate the 30 need for a labeled molecule. #### BRIEF DESCRIPTION OF THE FIGURES FIG. 1 provides data tables determined in accordance with ³⁵ Example 6 for the comparison of marker levels in urine samples collected for Cohort 1 (patients that did not progress beyond RIFLE stage 0) and in urine samples collected from subjects at 0, 24 hours, and 48 hours prior to reaching stage R, I or F in Cohort 2.
Tables provide descriptive statistics, ⁴⁰ AUC analysis, and sensitivity, specificity and odds ratio calculations at various threshold (cutoff) levels for the various markers. FIG. 2 provides data tables determined in accordance with Example 7 for the comparison of marker levels in urine samples collected for Cohort 1 (patients that did not progress beyond RIFLE stage 0 or R) and in urine samples collected from subjects at 0, 24 hours, and 48 hours prior to reaching stage I or F in Cohort 2. Tables provide descriptive statistics, AUC analysis, and sensitivity, specificity and odds ratio calculations at various threshold (cutoff) levels for the various markers. FIG. 3 provides data tables determined in accordance with Example 8 for the comparison of marker levels in urine samples collected for Cohort 1 (patients that reached, but did not progress beyond, RIFLE stage R) and in urine samples collected from subjects at 0, 24 hours, and 48 hours prior to reaching stage I or F in Cohort 2. Tables provide descriptive statistics, AUC analysis, and sensitivity, specificity and odds ratio calculations at various threshold (cutoff) levels for the various markers FIG. 4 provides data tables determined in accordance with Example 9 for the comparison of marker levels in urine samples collected for Cohort 1 (patients that did not progress beyond RIFLE stage 0) and in urine samples collected from 65 subjects at 0, 24 hours, and 48 hours prior to reaching stage F in Cohort 2. Tables provide descriptive statistics, AUC 16 analysis, and sensitivity, specificity and odds ratio calculations at various threshold (cutoff) levels for the various markers FIG. 5 provides data tables determined in accordance with Example 6 for the comparison of marker levels in plasma samples collected for Cohort 1 (patients that did not progress beyond RIFLE stage 0) and in plasma samples collected from subjects at 0, 24 hours, and 48 hours prior to reaching stage R, I or F in Cohort 2. Tables provide descriptive statistics, AUC analysis, and sensitivity, specificity and odds ratio calculations at various threshold (cutoff) levels for the various markers. FIG. 6 provides data tables determined in accordance with Example 7 for the comparison of marker levels in plasma samples collected for Cohort 1 (patients that did not progress beyond RIFLE stage 0 or R) and in plasma samples collected from subjects at 0, 24 hours, and 48 hours prior to reaching stage I or F in Cohort 2. Tables provide descriptive statistics, AUC analysis, and sensitivity, specificity and odds ratio calculations at various threshold (cutoff) levels for the various markers. FIG. 7 provides data tables determined in accordance with Example 8 for the comparison of marker levels in plasma samples collected for Cohort 1 (patients that reached, but did not progress beyond, RIFLE stage R) and in plasma samples collected from subjects at 0, 24 hours, and 48 hours prior to reaching stage I or F in Cohort 2. Tables provide descriptive statistics, AUC analysis, and sensitivity, specificity and odds ratio calculations at various threshold (cutoff) levels for the various markers. FIG. 8 provides data tables determined in accordance with Example 9 for the comparison of marker levels in plasma samples collected for Cohort 1 (patients that did not progress beyond RIFLE stage 0) and in plasma samples collected from subjects at 0, 24 hours, and 48 hours prior to reaching stage F in Cohort 2. Tables provide descriptive statistics, AUC analysis, and sensitivity, specificity and odds ratio calculations at various threshold (cutoff) levels for the various markers. ## DETAILED DESCRIPTION OF THE INVENTION The present invention relates to methods and compositions for diagnosis, differential diagnosis, risk stratification, monitoring, classifying and determination of treatment regimens in subjects suffering or at risk of suffering from injury to renal function, reduced renal function and/or acute renal failure through measurement of one or more kidney injury markers. In various embodiments, a measured concentration of one or more markers selected from the group consisting of Clusterin, Heart-type fatty acid binding protein, Hepatocyte growth factor, Interferon gamma, Interleukin-12 subunit beta, Interleukin-16, Interleukin-2, 72 kDa type IV collagenase, Matrix metalloproteinase-9, Midkine, and Serum amyloid P-component, or one or more markers related thereto, are correlated to the renal status of the subject. For purposes of this document, the following definitions apply: As used herein, an "injury to renal function" is an abrupt (within 14 days, preferably within 7 days, more preferably within 72 hours, and still more preferably within 48 hours) measurable reduction in a measure of renal function. Such an injury may be identified, for example, by a decrease in glomerular filtration rate or estimated GFR, a reduction in urine output, an increase in serum creatinine, an increase in serum cystatin C, a requirement for renal replacement therapy, etc. "Improvement in Renal Function" is an abrupt (within 14 days, preferably within 7 days, more preferably within 72 hours, and still more preferably within 48 hours) measurable increase in a measure of renal function. Preferred methods for measuring and/or estimating GFR are described hereinafter. As used herein, "reduced renal function" is an abrupt (within 14 days, preferably within 7 days, more preferably within 72 hours, and still more preferably within 48 hours) reduction in kidney function identified by an absolute increase in serum creatinine of greater than or equal to 0.1~mg/dL ($\geq 8.8~\text{µmol/L}$), a percentage increase in serum creatinine of greater than or equal to 20% (1.2-fold from baseline), or a reduction in urine output (documented oliguria of less than 0.5 ml/kg per hour). As used herein, "acute renal failure" or "ARF" is an abrupt 15 (within 14 days, preferably within 7 days, more preferably within 72 hours, and still more preferably within 48 hours) reduction in kidney function identified by an absolute increase in serum creatinine of greater than or equal to 0.3 mg/dl (≥26.4 µmol/l), a percentage increase in serum creatinine of greater than or equal to 50% (1.5-fold from baseline), or a reduction in urine output (documented oli- 18 guria of less than 0.5 ml/kg per hour for at least 6 hours). This term is synonymous with "acute kidney injury" or "AKI." In this regard, the skilled artisan will understand that the signals obtained from an immunoassay are a direct result of complexes formed between one or more antibodies and the target biomolecule (i.e., the analyte) and polypeptides containing the necessary epitope(s) to which the antibodies bind. While such assays may detect the full length biomarker and the assay result be expressed as a concentration of a biomarker of interest, the signal from the assay is actually a result of all such "immunoreactive" polypeptides present in the sample. Expression of biomarkers may also be determined by means other than immunoassays, including protein measurements (such as dot blots, western blots, chromatographic methods, mass spectrometry, etc.) and nucleic acid measurements (mRNA quatitation). This list is not meant to be limiting. As used herein, the term "Clusterin" refers to one or more polypeptides present in a biological sample that are derived from the Clusterin precursor (Swiss-Prot P10909 (SEQ ID NO: 1)). | 10 | 20 | 30 | 40 | 50 | 60 | |------------|------------|------------|-------------|------------|------------| | MMKTLLLFVG | LLLTWESGQV | LGDQTVSDNE | LQEMSNQGSK | YVNKEIQNAV | NGVKQIKTLI | | 70 | 80 | 90 | 100 | 110 | 120 | | EKTNEERKTL | LSNLEEAKKK | KEDALNETRE | SETKLKELPG | VCNETMMALW | EECKPCLKQT | | 130 | 140 | 150 | 160 | 170 | 180 | | CMKFYARVCR | SGSGLVGRQL | EEFLNQSSPF | YFWMNGDRID | SLLENDRQQT | HMLDVMQDHF | | 190 | 200 | 210 | 220 | 230 | 240 | | SRASSIIDEL | FQDRFFTREP | QDTYHYLPFS | LPHRRPHFFF | PKSRIVRSLM | PFSPYEPLNF | | 250 | 260 | 270 | 280 | 290 | 300 | | HAMFQPFLEM | IHEAQQAMDI | HFHSPAFQHP | PTEFIREGDDI | RTVCREIRH | NSTGCLRMKD | | 310 | 320 | 330 | 340 | 350 | 360 | | QCDKCREILS | VDCSTNNPSQ | AKLRRELDES | LQVAERLTRK | YNELLKSYQW | KMLNTSSLLE | | 370 | 380 | 390 | 400 | 410 | 420 | | QLNEQFNWVS | RLANLTQGED | QYYLRVTTVA | SHTSDSDVPS | GVTEVVVKLF | DSDPITVTVP | | 430 | 440 | | | | | | VEVSRKNPKF | METVAEKALO | EYRKKHREE | | | | The following domains have been identified in Clusterin: | | Residues | Length | Domain ID | |----|----------|--------|-----------------------| | | 1-22 | 22 | Signal peptide | | 50 | 23-449 | 427 | Clusterin | | 30 | 23-227 | 205 | Clusterin beta chain | | | 228-449 | 222 | Clusterin alpha chain | As used herein, the term "Heart-type fatty acid-binding protein" refers to one or more polypeptides present in a biological sample that are derived from the Heart-type fatty acid-binding protein precursor (Swiss-Prot P05413 (SEQ ID NO: 2)). | 60
THSTFKI | TL | 50
TIIEKNGDIL | | 30
MKSLGVGFAT | 20
LVDSKNFDDY | 10
MVDAFLGTWK | |----------------|----|-------------------|-------------------|------------------|------------------|------------------| | 120
LILTLTI | | 110
OETTLVRELI | 100
KLVHLOKWDG | 90
VKSIVTLDGG | 00 | 70
TEISFKLGVE | 19 The following domains have been identified in Heart-type fatty acid-binding protein: | Residues | Length | Domain ID | _ 5 | |----------|--------|---------------------------------------|-----| | 1 | 1 | Initiator methionine | _ | | 2-133 | 132 | Heart-type fatty acid-binding protein | | As used herein, the term "Hepatocyte growth factor" refers to one or more polypeptides present in a biological sample that are derived from the Hepatocyte growth factor precursor (Swiss-Prot P14210 (SEQ ID NO: 3)). | 10
MWVTKLLPAL | 20
LLQHVLLHLL | | 40
GQRKRRNTIH | | | |-------------------|-------------------|-------------------|-------------------|-------------------|-------------------| |
70
TKKVNTADQC | 80
ANRCTRNKGL | | | 110
FNSMSSGVKK | 120
EFGHEFDLYE | | 130
NKDYIRNCII | 140
GKGRSYKGTV | | 160
PWSSMIPHEH | | 180
DLQENYCRNP | | 190
RGEEGGPWCF | 200
TSNPEVRYEV | | 220
CMTCNGESYR | | 240
ICQRWDHQTP | | 250
HRHKFLPERY | 260
PDKGFDDNYC | 270
RNPDGQPRPW | | | 300
NTMNDTDVPL | | 310
ETTECIQGQG | 320
EGYRGTVNTI | 330
WNGIPCQRWD | | | 360
ENYCRNPDGS | | 370
ESPWCFTTDP | 380
NIRVGYCSQI | | 400
CYRGNGKNYM | | 420
TCSMWDKNME | | 430
DLHRHIFWEP | 440
DASKLNENYC | | 460
WCYTGNPLIP | | 480
GDTTPTIVNL | | 490
DHPVISCAKT | 500
KQLRVVNGIP | 510
TRTNIGWMVS | 520
LRYRNKHICG | 530
GSLIKESWVL | 540
TARQCFPSRD | | 550
LKDYEAWLGI | 560
HDVHGRGDEK | 570
CKQVLNVSQL | 580
VYGPEGSDLV | 590
LMKLARPAVL | 600
DDFVSTIDLP | | 610
NYGCTIPEKT | 620
SCSVYGWGYT | 630
GLINYDGLLR | 640
VAHLYIMGNE | | 660
TLNESEICAG | | 670
AEKIGSGPCE | 680
GDYGGPLVCE | 690
QHKMRMVLGV | 700
IVPGRGCAIP | 710
NRPGIFVRVA | 720
YYAKWIHKII | | LTYKVPQS | | | | | | The following domains have been identified in Hepatocyte growth factor: $\ensuremath{^{45}}$ | Residues | Length | Domain ID | 50 | |---------------------------|------------------|--|----| | 1-31
32-494
495-728 | 31
463
234 | signal sequence
Hepatocyte growth factor alpha chain
Hepatocyte growth factor beta chain | | As used herein, the term "Interferon gamma" refers to one 55 or more polypeptides present in a biological sample that are derived from the Interferon gamma precursor (Swiss-Prot P01579 (SEQ ID NO: 4)). | 10 | 20 | 30 | 40 | 50 | 60 | |------------|------------|------------|------------|------------|------------| | MKYTSYILAF | QLCIVLGSLG | CYCQDPYVKE | AENLKKYFNA | GHSDVADNGT | LFLGILKNWK | | | | | | | | | 70 | 80 | 90 | 100 | 110 | 120 | | EESDRKIMQS | QIVSFYFKLF | KNFKDDQSIQ | KSVETIKEDM | NVKFFNSNKK | KRDDFEKLTN | | | | | | | | | 130 | 140 | 150 | 160 | | | | YSVTDLNVQR | KAIHELIQVM | AELSPAAKTG | KRKRSQMLFR | GRRASQ | | **20** The following domains have been identified in Interferon gamma: | Residues | Length | Domain ID | |----------|--------|------------------| | 1-23 | 23 | Signal peptide | | 24-161 | 138 | Interferon gamma | | 162-166 | 5 | Propeptide | 22 As used herein, the term "Interleukin-12 subunit beta" (also known as "Interleukin-12 p40") refers to one or more polypeptides present in a biological sample 5 that are derived from the Interleukin-12 subunit beta precursor (Swiss-Prot P29460 (SEQ ID NO: 5)). | 10 | 20 | 30 | 40 | 50 | 60 | | |------------|------------|------------|------------|------------|------------|--| | MCHQQLVISW | FSLVFLASPL | VAIWELKKDV | YVVELDWYPD | APGEMVVLTC | DTPEEDGITW | | | 70 | 80 | 90 | 100 | 110 | 120 | | | TLDQSSEVLG | SGKTLTIQVK | EFGDAGQYTC | HKGGEVLSHS | LLLLHKKEDG | IWSTDILKDQ | | | 130 | 140 | 150 | 160 | 170 | 180 | | | KEPKNKTFLR | CEAKNYSGRF | TCWWLTTIST | DLTFSVKSSR | GSSDPQGVTC | GAATLSAERV | | | 190 | 200 | 210 | 220 | 230 | 240 | | | RGDNKEYEYS | VECQEDSACP | AAEESLPIEV | MVDAVHKLKY | ENYTSSFFIR | DIIKPDPPKN | | | 250 | 260 | 270 | 280 | 290 | 300 | | | LQLKPLKNSR | QVEVSWEYPD | TWSTPHSYFS | LTFCVQVQGK | SKREKKDRVF | TDKTSATVIC | | | 310 | 320 | FWASVDCS | | | | | RA QDRYYSSSWS EWASVPCS The following domains have been identified in Interleukin-12 subunit beta: | 30 | | | | |----|----------------|-----------|---| | | Residues | Length | Domain ID | | | 1-22
23-328 | 22
306 | Signal peptide
Interleukin-12 subunit beta | As used herein, the term "Interleukin-16" refers to one or more polypeptides present in a biological sample that are derived from the Interleukin-16 precursor (Swiss-Prot Q14005 (SEQ ID NO: 6)). | 10
MDYSFDTTAE | 20
DPWVRISDCI | | 40
NHGHMPLQPN | 50
ASLNEEEGTQ | 60
GHPDGTPPKL | |-------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | 70
DTANGTPKVY | 80
KSADSSTVKK | 90
GPPVAPKPAW | 100
FRQSLKGLRN | 110
RASDPRGLPD | 120
PALSTQPAPA | | 130
SREHLGSHIR | 140
ASSSSSIRQ | 150
RISSFETFGS | | 170
LSLQPSSGEA | | | 190
RFSGLLGRGA | 200
APTLVPQQPE | 210
QVLSSGSPAA | 220
SEARDPGVSE | 230
SPPPGRQPNQ | 240
KTLPPGPDPL | | 250
LRLLSTQAEE | 260
SQGPVLKMPS | 270
QRARSFPLTR | | 290
EKTSKLYSIS | 300
SQVSSAVMKS | | 310
LLCLPSSISC | | | | 350
ALDTGFSLNL | | | 370
TEAKEDDDGD | 380
HSSLQSGQSV | | 400
KLIEEVKVLD | 410
EATLKQLDGI | 420
HVTILHKEEG | | 430
AGLGFSLAGG | | | | 470
VLSINGKSLK | | | 490
LRQAREPRQA | 500
VIVTRKLTPE | 510
AMPDLNSSTD | | 530
VSVESTAEAT | 540
VCTVTLEKMS | | 550
AGLGFSLEGG | 560
KGSLHGDKPL | 570
TINRIFKGAA | | 590
DEILQLGGTA | 600
MQGLTRFEAW | | 610
NIIKALPDGP | 620
VTIVIRRKSL | 630
QSKETTAAGD | S | | | | 1-1332 | 1332 | Pro-interleukin-16 | |-----------|------|--------------------| | 1212-1332 | 121 | Interleukin-16 | As used herein, the term "Interleukin-2" refers to one or more polypeptides present in a biological sample that are derived from the Interleukin-2 precursor (Swiss-Prot P60568 (SEQ ID NO: 7)). 10 20 30 40 50 60 MYRMQLLSCI ALSLALVTNS APTSSSTKKT QLQLEHLLLD LQMILNGINN YKNPKLTRML 70 80 90 100 110 120 TFKFYMPKKA TELKHLQCLE EELKPLEEVL NLAQSKNFHL RPRDLISNIN VIVLELKGSE 130 140 150 TTFMCEYADE TATIVEFLNR WITFCQSIIS TLT The following domains have been identified in Interleukin-2: 20 | Residues | Length | Domain ID | |----------|--------|----------------| | 1-20 | 20 | Signal peptide | | 21-153 | 133 | Interleukin-2 | 25 As used herein, the term "72 kDa type IV collagenase" (also known as "Matrix metalloproteinase-2") refers to one or more polypeptides present in a biological sample that are derived from the 72 kDa type IV collagenase precursor (Swiss-Prot P08253 (SEQ ID NO: 8)). 30 | 10 | 20 | 30 | 40 | 50 | 60 | |------------|------------|------------|------------|------------|------------| | MEALMARGAL | TGPLRALCLL | GCLLSHAAAA | PSPIIKFPGD | VAPKTDKELA | VQYLNTFYGC | | 70 | 80 | 90 | 100 | 110 | 120 | | PKESCNLFVL | KDTLKKMQKF | FGLPQTGDLD | QNTIETMRKP | RCGNPDVANY | NFFPRKPKWD | | 130 | 140 | 150 | 160 | 170 | 180 | | KNQITYRIIG | YTPDLDPETV | DDAFARAFQV | WSDVTPLRFS | RIHDGEADIM | INFGRWEHGD | | 190 | 200 | 210 | 220 | 230 | 240 | | GYPFDGKDGL | LAHAFAPGTG | VGGDSHFDDD | ELWTLGEGQV | VRVKYGNADG | EYCKFPFLFN | | 250 | 260 | 270 | 280 | 290 | 300 | | GKEYNSCTDT | GRSDGFLWCS | TTYNFEKDGK | YGFCPHEALF | TMGGNAEGQP | CKFPFRFQGT | | 310 | 320 | 330 | 340 | 350 | 360 | | SYDSCTTEGR | TDGYRWCGTT | EDYDRDKKYG | FCPETAMSTV | GGNSEGAPCV | FPFTFLGNKY | | 370 | 380 | 390 | 400 | 410 | 420 | | ESCTSAGRSD | GKMWCATTAN | YDDDRKWGFC | PDQGYSLFLV | AAHEFGHAMG | LEHSQDPGAL | | 430 | 440 | 450 | 460 | 470 | 480 | | MAPIYTYTKN | FRLSQDDIKG | IQELYGASPD | IDLGTGPTPT | LGPVTPEICK | QDIVFDGIAQ | | 490 | 500 | 510 | 520 | 530 | 540 | | IRGEIFFFKD | RFIWRTVTPR | DKPMGPLLVA | TFWPELPEKI | DAVYEAPQEE | KAVFFAGNEY | | 550 | 560 | 570 | 580 | 590 | 600 | | WIYSASTLER | GYPKPLTSLG | LPPDVQRVDA | AFNWSKNKKT | YIFAGDKFWR | YNEVKKKMDP | | 610 | 620 | 630 | 640 | 650 | 660 | | GFPKLIADAW | NAIPDNLDAV | VDLQGGGHSY | FFKGAYYLKL | ENQSLKSVKF | GSIKSDWLGC | 6: The following domains have been identified in 72 kDa type IV collagenase: | | Residues | Length | Domain ID | _ | |---|----------|--------|----------------------------|---| | _ | 1-29 | 29 | Signal peptide | | | | 30-109 | 90 | Activation peptide | | | | 110-660 | 551 | 72 kDa type IV collagenase | 5 | As used herein, the term "Matrix metalloproteinase-9" refers to one or more polypeptides present in a biological sample that are derived from the Matrix metalloproteinase-9 precursor (Swiss-Prot P14780 (SEQ ID NO: 9)). | 10 | 20 | 30 | 40 | 50 | 60 | |-------------------|-------------------|-------------------|-------------------|------------|------------| | MSLWQPLVLV | LLVLGCCFAA | PRQRQSTLVL | FPGDLRTNLT | DRQLAEEYLY | RYGYTRVAEM | | 70 | 80 | 90 | 100 | 110 | 120 | | RGESKSLGPA | LLLLQKQLSL | PETGELDSAT | LKAMRTPRCG | VPDLGRFQTF | EGDLKWHHHN | | 130 | 140 | 150 | 160 | 170 | 180 | | ITYWIQNYSE | DLPRAVIDDA | FARAFALWSA | VTPLTFTRVY | SRDADIVIQF | GVAEHGDGYP | | 190 | 200 | 210 | 220 | 230 | 240 | | FDGKDGLLAH | AFPPGPGIQG | DAHFDDDELW | SLGKGVVVPT | RFGNADGAAC | HFPFIFEGRS | | 250 | 260 | 270 | 280 | 290 | 300 | | YSACTTDGRS | DGLPWCSTTA | NYDTDDRFGF | CPSERLYTQD | GNADGKPCQF | PFIFQGQSYS | | 310 | 320 | 330 | 340 | 350 | 360 | | ACTTDGRSDG | YRWCATTANY | DRDKLFGFCP | TRADSTVMGG | NSAGELCVFP | FTFLGKEYST | | 370 | 380 | 390 | 400 | 410 | 420 | | CTSEGRGDGR | LWCATTSNFD | SDKKWGFCPD | QGYSLFLVAA | HEFGHALGLD | HSSVPEALMY | | 430 | 440 | 450 | 460 | 470 | 480 | | PMYRFTEGPP | LHKDDVNGIR | HLYGPRPEPE | PRPPTTTTPQ | PTAPPTVCPT | GPPTVHPSER | | 490 | 500 | 510 | 520 | 530 | 540 | | PTAGPTGPPS | AGPTGPPTAG | PSTATTVPLS | PVDDACNVNI | FDAIAEIGNQ | LYLFKDGKYW | | 550 | 560 | 570 | 580 | 590 | 600 | | RFSEGRGSRP | QGPFLIADKW | PALPRKLDSV | FEEPLSKKLF | FFSGRQVWVY | TGASVLGPRR | | 610 | 620 | 630 | 640 | 650 | 660 | | LDKLGLGADV | AQVTGALRSG | RGKMLLFSGR | RLWRFDVKAQ | MVDPRSASEV | DRMFPGVPLD | | 670
THDVFQYREK | 680
AYFCQDRFYW | 690
RVSSRSELNQ | 700
VDQVGYVTYD | ILQCPED | | The following domains have been identified in Matrix metalloproteinase-9: | _ | | | | 45 | |---|----------|--------|--|----| | | Residues | Length | Domain ID | | | | 1-19 | 19 | Signal peptide | | | | 20-93 | 74 | Activation peptide | | | | 107-707 | 601 | Matrix metalloproteinase-9 82 kDa form | 50 | In addition, a 67 kDa form of Matrix metalloproteinase-9 has been identified. As used herein, the term "Midkine" refers to one or more polypeptides present in a biological sample that are derived from the Midkine precursor (Swiss-Prot P21741 (SEQ ID NO:
10)). 10 20 30 40 50 60 MQHRGFLLLT LLALLALTSA VAKKKDKVKK GGPGSECAEW AWGPCTPSSK DCGVGFREGT 70 80 90 100 110 120 CGAQTQRIRC RVPCNWKKEF GADCKYKFEN WGACDGGTGT KVRQGTLKKA RYNAQCQETI 130 140 RVTKPCTPKT KAKAKAKKGK GKD **26** 27 The following domains have been identified in Midkine: | Residues | Length | Domain ID | |----------|--------|----------------| | 1-20 | 20 | Signal peptide | | 21-143 | 123 | Midkine | As used herein, the term "Serum amyloid P-component" refers to one or more polypeptides present in a biological sample that are derived from the Serum amyloid P-component precursor (Swiss-Prot P02743 (SEQ ID NO: 11)). nary disease. Further, while a subject is preferably a living organism, the invention described herein may be used in post-mortem analysis as well. Preferred subjects are humans, and most preferably "patients," which as used herein refers to living humans that are receiving medical care for a disease or condition. This includes persons with no defined illness who are being investigated for signs of pathology. Preferably, an analyte is measured in a sample. Such a sample may be obtained from a subject, or may be obtained from biological materials intended to be provided to the subject. For example, a sample may be obtained from a | 60 | 50 | 40 | 30 | 20 | 10 | |------------|------------|------------|------------|------------|------------| | NFTLCFRAYS | LITPLEKPLQ | PRESVTDHVN | TDLSGKVFVF | LTSLLEAFAH | MNKPLLWISV | | 120 | 110 | 100 | 90 | 80 | 70 | | VHICVSWESS | SKVIEKFPAP | SLYIGRHKVT | LVYKERVGEY | YNTQGRDNEL | DLSRAYSLFS | | 180 | 170 | 160 | 150 | 140 | 130 | | GEIGDLYMWD | GKFDRSQSFV | VLGQEQDSYG | GYFVEAQPKI | TPLVKKGLRQ | SGIAEFWING | | | | 220 | 210 | 200 | 190 | | | VWV | IRGYVIIKPL | ILDWQALNYE | AYQGTPLPAN | SVLPPENILS | The following domains have been identified in Serum amyloid P-component: 25 | Residues | Length | Domain ID | |----------|--------|-----------------------------------| | 1-19 | 19 | Signal peptide | | 20-223 | 204 | Serum amyloid P-component | | 20-222 | 203 | Serum amyloid P-component (1-203) | As used herein, the term "relating a signal to the presence or amount" of an analyte reflects this understanding. Assay 35 signals are typically related to the presence or amount of an analyte through the use of a standard curve calculated using known concentrations of the analyte of interest. As the term is used herein, an assay is "configured to detect" an analyte if an assay can generate a detectable signal indicative of the 40 presence or amount of a physiologically relevant concentration of the analyte. Because an antibody epitope is on the order of 8 amino acids, an immunoassay configured to detect a marker of interest will also detect polypeptides related to the marker sequence, so long as those polypeptides contain 45 the epitope(s) necessary to bind to the antibody or antibodies used in the assay. The term "related marker" as used herein with regard to a biomarker such as one of the kidney injury markers described herein refers to one or more fragments, variants, etc., of a particular marker or its biosynthetic parent 50 that may be detected as a surrogate for the marker itself or as independent biomarkers. The term also refers to one or more polypeptides present in a biological sample that are derived from the biomarker precursor complexed to additional species, such as binding proteins, receptors, heparin, 55 lipids, sugars, etc. The term "positive going" marker as that term is used herein refer to a marker that is determined to be elevated in subjects suffering from a disease or condition, relative to subjects not suffering from that disease or condition. The 60 term "negative going" marker as that term is used herein refer to a marker that is determined to be reduced in subjects suffering from a disease or condition, relative to subjects not suffering from that disease or condition. The term "subject" as used herein refers to a human or 65 non-human organism. Thus, the methods and compositions described herein are applicable to both human and veteri- kidney being evaluated for possible transplantation into a subject, and an analyte measurement used to evaluate the kidney for preexisting damage. Preferred samples are body fluid samples. The term "body fluid sample" as used herein refers to a sample of bodily fluid obtained for the purpose of diagnosis, prognosis, classification or evaluation of a subject of interest, such as a patient or transplant donor. In certain embodiments, such a sample may be obtained for the purpose of determining the outcome of an ongoing condition or the effect of a treatment regimen on a condition. Preferred body fluid samples include blood, serum, plasma, cerebrospinal fluid, urine, saliva, sputum, and pleural effusions. In addition, one of skill in the art would realize that certain body fluid samples would be more readily analyzed following a fractionation or purification procedure, for example, separation of whole blood into serum or plasma components. The term "diagnosis" as used herein refers to methods by which the skilled artisan can estimate and/or determine the probability ("a likelihood") of whether or not a patient is suffering from a given disease or condition. In the case of the present invention, "diagnosis" includes using the results of an assay, most preferably an immunoassay, for a kidney injury marker of the present invention, optionally together with other clinical characteristics, to arrive at a diagnosis (that is, the occurrence or nonoccurrence) of an acute renal injury or ARF for the subject from which a sample was obtained and assayed. That such a diagnosis is "determined" is not meant to imply that the diagnosis is 100% accurate. Many biomarkers are indicative of multiple conditions. The skilled clinician does not use biomarker results in an informational vacuum, but rather test results are used together with other clinical indicia to arrive at a diagnosis. Thus, a measured biomarker level on one side of a predetermined diagnostic threshold indicates a greater likelihood of the occurrence of disease in the subject relative to a measured level on the other side of the predetermined diagnostic threshold. Similarly, a prognostic risk signals a probability ("a likelihood") that a given course or outcome will occur. A level or a change in level of a prognostic indicator, which in turn is associated with an increased probability of morbidity (e.g., worsening renal function, future ARF, or death) is 28 referred to as being "indicative of an increased likelihood" of an adverse outcome in a patient. Marker Assays In general, immunoassays involve contacting a sample containing or suspected of containing a biomarker of interest 5 with at least one antibody that specifically binds to the biomarker. A signal is then generated indicative of the presence or amount of complexes formed by the binding of polypeptides in the sample to the antibody. The signal is then related to the presence or amount of the biomarker in the 10 sample. Numerous methods and devices are well known to the skilled artisan for the detection and analysis of biomarkers. See, e.g., U.S. Pat. Nos. 6,143,576; 6,113,855; 6,019, 944; 5,985,579; 5,947,124; 5,939,272; 5,922,615; 5,885, 527; 5,851,776; 5,824,799; 5,679,526; 5,525,524; and 15 5,480,792, and The Immunoassay Handbook, David Wild, ed. Stockton Press, New York, 1994, each of which is hereby incorporated by reference in its entirety, including all tables, figures and claims. The assay devices and methods known in the art can 20 utilize labeled molecules in various sandwich, competitive, or non-competitive assay formats, to generate a signal that is related to the presence or amount of the biomarker of interest. Suitable assay formats also include chromatographic, mass spectrographic, and protein "blotting" meth- 25 ods. Additionally, certain methods and devices, such as biosensors and optical immunoassays, may be employed to determine the presence or amount of analytes without the need for a labeled molecule. See, e.g., U.S. Pat. Nos. 5,631,171; and 5,955,377, each of which is hereby incorporated by reference in its entirety, including all tables, figures and claims. One skilled in the art also recognizes that robotic instrumentation including but not limited to Beckman ACCESS®, Abbott AXSYM®, Roche ELECSYS®, Dade Behring STRATUS® systems are among the immu- 35 noassay analyzers that are capable of performing immunoassays. But any suitable immunoassay may be utilized, for example, enzyme-linked immunoassays (ELISA), radioimmunoassays (RIAs), competitive binding assays, and the Antibodies or other polypeptides may be immobilized onto a variety of solid supports for use in assays. Solid phases that may be used to immobilize specific binding members include include those developed and/or used as solid phases in solid phase binding assays. Examples of 45 suitable solid phases include membrane filters, cellulosebased papers, beads (including polymeric, latex and paramagnetic particles), glass, silicon wafers, microparticles, nanoparticles, TentaGels, AgroGels, PEGA gels, SPOCC gels, and multiple-well plates. An assay strip could be 50 prepared by coating the antibody or a plurality of antibodies in an array on solid support. This strip could then be dipped into the test sample and then processed quickly through washes and detection steps to generate a measurable signal, such as a colored spot. Antibodies or other polypeptides may 55 be bound to specific zones of assay devices either by conjugating directly to an assay device surface, or by indirect binding. In an example of the later case, antibodies or other polypeptides may be immobilized on particles or other solid supports, and that solid support immobilized to 60 the device surface. Biological assays require methods for detection, and one of the most common methods for quantitation of results is to conjugate a detectable label to a protein or
nucleic acid that has affinity for one of the components in the biological 65 system being studied. Detectable labels may include molecules that are themselves detectable (e.g., fluorescent moi30 eties, electrochemical labels, metal chelates, etc.) as well as molecules that may be indirectly detected by production of a detectable reaction product (e.g., enzymes such as horseradish peroxidase, alkaline phosphatase, etc.) or by a specific binding molecule which itself may be detectable (e.g., biotin, digoxigenin, maltose, oligohistidine, 2,4-dintrobenzene, phenylarsenate, ssDNA, dsDNA, etc.). Preparation of solid phases and detectable label conjugates often comprise the use of chemical cross-linkers. Cross-linking reagents contain at least two reactive groups, and are divided generally into homofunctional cross-linkers (containing identical reactive groups) and heterofunctional cross-linkers (containing non-identical reactive groups). Homobifunctional cross-linkers that couple through amines, sulfhydryls or react non-specifically are available from many commercial sources. Maleimides, alkyl and aryl halides, alpha-haloacyls and pyridyl disulfides are thiol reactive groups. Maleimides, alkyl and aryl halides, and alpha-haloacyls react with sulfhydryls to form thiol ether bonds, while pyridyl disulfides react with sulfhydryls to produce mixed disulfides. The pyridyl disulfide product is cleavable. Imidoesters are also very useful for proteinprotein cross-links. A variety of heterobifunctional crosslinkers, each combining different attributes for successful conjugation, are commercially available. In certain aspects, the present invention provides kits for the analysis of the described kidney injury markers. The kit comprises reagents for the analysis of at least one test sample which comprise at least one antibody that a kidney injury marker. The kit can also include devices and instructions for performing one or more of the diagnostic and/or prognostic correlations described herein. Preferred kits will comprise an antibody pair for performing a sandwich assay, or a labeled species for performing a competitive assay, for the analyte. Preferably, an antibody pair comprises a first antibody conjugated to a solid phase and a second antibody conjugated to a detectable label, wherein each of the first and second antibodies that bind a kidney injury marker. Most preferably each of the antibodies are monoclonal antibodies. The instructions for use of the kit and performing the correlations can be in the form of labeling, which refers to any written or recorded material that is attached to, or otherwise accompanies a kit at any time during its manufacture, transport, sale or use. For example, the term labeling encompasses advertising leaflets and brochures, packaging materials, instructions, audio or video cassettes, computer discs, as well as writing imprinted directly on kits. Antibodies The term "antibody" as used herein refers to a peptide or polypeptide derived from, modeled after or substantially encoded by an immunoglobulin gene or immunoglobulin genes, or fragments thereof, capable of specifically binding an antigen or epitope. See, e.g. Fundamental Immunology, 3rd Edition, W. E. Paul, ed., Raven Press, N.Y. (1993); Wilson (1994; J. Immunol. Methods 175:267-273; Yarmush (1992) J. Biochem. Biophys. Methods 25:85-97. The term antibody includes antigen-binding portions, i.e., "antigen binding sites," (e.g., fragments, subsequences, complementarity determining regions (CDRs)) that retain capacity to bind antigen, including (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab')2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al., (1989) Nature 341:544-546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR). Single chain antibodies are also included by reference in the term "antibody." Antibodies used in the immunoassays described herein preferably specifically bind to a kidney injury marker of the 5 present invention. The term "specifically binds" is not intended to indicate that an antibody binds exclusively to its intended target since, as noted above, an antibody binds to any polypeptide displaying the epitope(s) to which the antibody binds. Rather, an antibody "specifically binds" if its affinity for its intended target is about 5-fold greater when compared to its affinity for a non-target molecule which does not display the appropriate epitope(s). Preferably the affinity of the antibody will be at least about 5 fold, preferably 10 fold, more preferably 25-fold, even more preferably 50-fold, 15 and most preferably 100-fold or more, greater for a target molecule than its affinity for a non-target molecule. In preferred embodiments, Preferred antibodies bind with affinities of at least about 10⁷ M⁻¹, and preferably between about $10^8 \,\mathrm{M}^{-1}$ to about $10^9 \,\mathrm{M}^{-1}$, about $10^9 \,\mathrm{M}^{-1}$ to about $10^{10} \,$ 20 M^{-1} , or about $10^{10} M^{-1}$ to about $10^{12} M^{-1}$. Affinity is calculated as $K_d = k_{off}/k_{on}$ (k_{off} is the dissociation rate constant, K_{on} is the association rate constant and K_d is the equilibrium constant). Affinity can be determined at equilibrium by measuring the fraction bound (r) of labeled 25 ligand at various concentrations (c). The data are graphed using the Scatchard equation: r/c = K(n-r): where r=moles of bound ligand/mole of receptor at equilibrium; c=f receptor 30 concentration at equilibrium; K=f equilibrium association constant; and n=number of ligand binding sites per receptor 30 molecule. By graphical analysis, r/c is plotted on the Y-axis versus r on the X-axis, thus producing a Scatchard plot. Antibody affinity measurement by Scatchard analysis is well known in the art. See, e.g., van Erp et al., J. Immunoassay 12: 425-43, 1991; Nelson and Griswold, Comput. Methods 35 Programs Biomed. 27: 65-8, 1988. The term "epitope" refers to an antigenic determinant capable of specific binding to an antibody. Epitopes usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have 40 specific three dimensional structural characteristics, as well as specific charge characteristics. Conformational and non-conformational epitopes are distinguished in that the binding to the former but not the latter is lost in the presence of denaturing solvents. Numerous publications discuss the use of phage display technology to produce and screen libraries of polypeptides for binding to a selected analyte. See, e.g, Cwirla et al., Proc. Natl. Acad. Sci. USA 87, 6378-82, 1990; Devlin et al., Science 249, 404-6, 1990, Scott and Smith, Science 249, 50 386-88, 1990; and Ladner et al., U.S. Pat. No. 5,571,698. A basic concept of phage display methods is the establishment of a physical association between DNA encoding a polypeptide to be screened and the polypeptide. This physical association is provided by the phage particle, which displays 55 a polypeptide as part of a capsid enclosing the phage genome which encodes the polypeptide. The establishment of a physical association between polypeptides and their genetic material allows simultaneous mass screening of very large numbers of phage bearing different polypeptides. Phage 60 displaying a polypeptide with affinity to a target bind to the target and these phage are enriched by affinity screening to the target. The identity of polypeptides displayed from these phage can be determined from their respective genomes. Using these methods a polypeptide identified as having a 65 binding affinity for a desired target can then be synthesized in bulk by conventional means. See, e.g., U.S. Pat. No. 32 6,057,098, which is hereby incorporated in its entirety, including all tables, figures, and claims. The antibodies that are generated by these methods may then be selected by first screening for affinity and specificity with the purified polypeptide of interest and, if required, comparing the results to the affinity and specificity of the antibodies with polypeptides that are desired to be excluded from binding. The screening procedure can involve immobilization of the purified polypeptides in separate wells of microtiter plates. The solution containing a potential antibody or groups of antibodies is then placed into the respective microtiter wells and incubated for about 30 min to 2 h. The microtiter wells are then washed and a labeled secondary antibody (for example, an anti-mouse antibody conjugated to alkaline phosphatase if the raised antibodies are mouse antibodies) is added to the wells and incubated for about 30 min and then washed. Substrate is added to the wells and a color reaction will appear where antibody to the immobilized polypeptide(s) are present. The antibodies so identified may then be further analyzed for affinity and specificity in the assay design selected. In the development of immunoassays for a target protein, the purified target protein acts as a standard with which to judge the sensitivity and specificity of the immunoassay using the antibodies that have been selected. Because the binding affinity of various antibodies may differ; certain antibody pairs (e.g., in sandwich assays) may interfere with one another sterically, etc., assay performance of an antibody may be a more important measure than absolute affinity and specificity of an antibody. Assay Correlations The term "correlating" as used herein in reference to the use of biomarkers refers to comparing the presence or amount of the biomarker(s) in a patient to its presence or amount in persons known to suffer from, or known to be at risk of, a given
condition; or in persons known to be free of a given condition. Often, this takes the form of comparing an assay result in the form of a biomarker concentration to a predetermined threshold selected to be indicative of the occurrence or nonoccurrence of a disease or the likelihood of some future outcome. Selecting a diagnostic threshold involves, among other things, consideration of the probability of disease, distribution of true and false diagnoses at different test thresholds, and estimates of the consequences of treatment (or a failure to treat) based on the diagnosis. For example, when considering administering a specific therapy which is highly efficacious and has a low level of risk, few tests are needed because clinicians can accept substantial diagnostic uncertainty. On the other hand, in situations where treatment options are less effective and more risky, clinicians often need a higher degree of diagnostic certainty. Thus, cost/benefit analysis is involved in selecting a diagnostic threshold. Suitable thresholds may be determined in a variety of ways. For example, one recommended diagnostic threshold for the diagnosis of acute myocardial infarction using cardiac troponin is the 97.5th percentile of the concentration seen in a normal population. Another method may be to look at serial samples from the same patient, where a prior "baseline" result is used to monitor for temporal changes in a biomarker level. Population studies may also be used to select a decision threshold. Reciever Operating Characteristic ("ROC") arose from the field of signal detection theory developed during World War II for the analysis of radar images, and ROC analysis is often used to select a threshold able to best distinguish a "diseased" subpopulation from a "nondiseased" subpopulation. A false positive in this case occurs when the person tests positive, but actually does not have the disease. A false negative, on the other hand, occurs when the person tests negative, suggesting they are healthy, when they actually do have the disease. To draw a ROC curve, the true positive rate (TPR) and false positive rate (FPR) are determined as the decision threshold is varied continuously. Since TPR is equivalent with sensitivity and FPR is equal to 1-specificity, the ROC graph is sometimes called the sensitivity vs (1-specificity) plot. A perfect test will have an area under the ROC curve of 1.0; a random test will have an area of 0.5. A threshold is selected to provide an acceptable level of specificity and sensitivity. In this context, "diseased" is meant to refer to a population having one characteristic (the presence of a disease or condition or the occurrence of some outcome) and "nondiseased" is meant to refer to a population lacking the characteristic. While a single decision threshold is the simplest application of such a method, multiple decision thresholds 20 may be used. For example, below a first threshold, the absence of disease may be assigned with relatively high confidence, and above a second threshold the presence of disease may also be assigned with relatively high confidence. Between the two thresholds may be considered 25 indeterminate. This is meant to be exemplary in nature only. In addition to threshold comparisons, other methods for correlating assay results to a patient classification (occurrence or nonoccurrence of disease, likelihood of an outcome, etc.) include decision trees, rule sets, Bayesian methods, and 30 neural network methods. These methods can produce probability values representing the degree to which a subject belongs to one classification out of a plurality of classifications Measures of test accuracy may be obtained as described 35 in Fischer et al., *Intensive Care Med.* 29: 1043-51, 2003, and used to determine the effectiveness of a given biomarker. These measures include sensitivity and specificity, predictive values, likelihood ratios, diagnostic odds ratios, and ROC curve areas. The area under the curve ("AUC") of a 40 ROC plot is equal to the probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one. The area under the ROC curve may be thought of as equivalent to the Mann-Whitney U test, which tests for the median difference between scores obtained in 45 the two groups considered if the groups are of continuous data, or to the Wilcoxon test of ranks. As discussed above, suitable tests may exhibit one or more of the following results on these various measures: a specificity of greater than 0.5, preferably at least 0.6, more 50 preferably at least 0.7, still more preferably at least 0.8, even more preferably at least 0.9 and most preferably at least 0.95, with a corresponding sensitivity greater than 0.2, preferably greater than 0.3, more preferably greater than 0.4, still more preferably at least 0.5, even more preferably 0.6, 55 yet more preferably greater than 0.7, still more preferably greater than 0.8, more preferably greater than 0.9, and most preferably greater than 0.95; a sensitivity of greater than 0.5, preferably at least 0.6, more preferably at least 0.7, still more preferably at least 0.8, even more preferably at least 0.9 and 60 most preferably at least 0.95, with a corresponding specificity greater than 0.2, preferably greater than 0.3, more preferably greater than 0.4, still more preferably at least 0.5, even more preferably 0.6, yet more preferably greater than 0.7, still more preferably greater than 0.8, more preferably greater than 0.9, and most preferably greater than 0.95; at least 75% sensitivity, combined with at least 75% specific34 ity; a ROC curve area of greater than 0.5, preferably at least 0.6, more preferably 0.7, still more preferably at least 0.8, even more preferably at least 0.9, and most preferably at least 0.95; an odds ratio different from 1, preferably at least about 2 or more or about 0.5 or less, more preferably at least about 3 or more or about 0.33 or less, still more preferably at least about 4 or more or about 0.25 or less, even more preferably at least about 5 or more or about 0.2 or less, and most preferably at least about 10 or more or about 0.1 or less; a positive likelihood ratio (calculated as sensitivity/(1specificity)) of greater than 1, at least 2, more preferably at least 3, still more preferably at least 5, and most preferably at least 10; and or a negative likelihood ratio (calculated as (1-sensitivity)/specificity) of less than 1, less than or equal to 0.5, more preferably less than or equal to 0.3, and most preferably less than or equal to 0.1 Additional clinical indicia may be combined with the kidney injury marker assay result(s) of the present invention. These include other biomarkers related to renal status. Examples include the following, which recite the common biomarker name, followed by the Swiss-Prot entry number for that biomarker or its parent: Actin (P68133); Adenosine deaminase binding protein (DPP4, P27487); Alpha-1-acid glycoprotein 1 (P02763); Alpha-1-microglobulin (P02760); Albumin (P02768); Angiotensinogenase (Renin, P00797); Annexin A2 (P07355); Beta-glucuronidase (P08236); B-2microglobulin (P61679); Beta-galactosidase (P16278); BMP-7 (P18075); Brain natriuretic peptide (proBNP, BNP-32, NTproBNP; P16860); Calcium-binding protein Beta (S100-beta, P04271); Carbonic anhydrase (Q16790); Casein Kinase 2 (P68400); Cathepsin B (P07858); Ceruloplasmin (P00450); Clusterin (P10909); Complement C3 (P01024); Cysteine-rich protein (CYR61, O00622); Cytochrome C (P99999); Epidermal growth factor (EGF, P01133); Endothelin-1 (P05305); Exosomal Fetuin-A (P02765); Fatty acid-binding protein, heart (FABP3, P05413); Fatty acidbinding protein, liver (P07148); Ferritin (light chain, P02793; heavy chain P02794); Fructose-1,6-biphosphatase (P09467); GRO-alpha (CXCL1, (P09341); Growth Hormone (P01241); Hepatocyte growth factor (P14210); Insulin-like growth factor I (P01343); Immunoglobulin G; Immunoglobulin Light Chains (Kappa and Lambda); Interferon gamma (P01308); Lysozyme (P61626); Interleukin-1alpha (P01583); Interleukin-2 (P60568); Interleukin-4 (P60568); Interleukin-9 (P15248); Interleukin-12p40 Interleukin-13 (P35225); Interleukin-16 (P29460); (O14005); L1 cell adhesion molecule (P32004); Lactate dehydrogenase (P00338); Leucine Aminopeptidase (P28838); Meprin A-alpha subunit (Q16819); Meprin A-beta subunit (Q16820); Midkine (P21741); MIP2-alpha (CXCL2, P19875); MMP-2 (P08253); MMP-9 (P14780); Netrin-1 (O95631); Neutral endopeptidase (P08473); Osteopontin (P10451); Renal papillary antigen 1 (RPA1); Renal papillary antigen 2 (RPA2); Retinol binding protein (P09455); Ribonuclease; S100 calcium-binding protein A6 (P06703); Serum Amyloid P Component (P02743); Sodium/ Hydrogen exchanger isoform (NHE3, P48764); Spermidine/ spermine N1-acetyltransferase (P21673); TGF-Beta1 (P01137); Transferrin (P02787); Trefoil factor 3 (TFF3, Q07654); Toll-Like protein 4 (O00206); Total protein; Tubulointerstitial nephritis antigen (Q9UJW2); Uromodulin (Tamm-Horsfall protein, P07911). For purposes of risk stratification, Adiponectin (Q15848); Alkaline phosphatase (P05186); Aminopeptidase N (P15144); CalbindinD28k (P05937); Cystatin C (P01034); 8 subunit of FIFO ATPase (P03928); Gamma-glutamyltransferase (P19440); GSTa (alpha-glutathione-S-transferase, P08263); GSTpi (Glutathione-S-transferase P; GST class-pi; P09211); IGFBP-1 (P08833); IGFBP-2 (P18065); IGFBP-6 (P24592); Integral membrane protein 1 (Itm1, P46977); Interleukin-6 (P05231); Interleukin-8 (P10145); Interleukin-18 (Q14116); IP-10 (10 kDa interferon-gamma-induced 5 protein, P02778); IRPR (IFRD1, O00458); Isovaleryl-CoA dehydrogenase (IVD, P26440); I-TAC/CXCL11 (O14625); Keratin 19 (P08727); Kim-1 (Hepatitis A virus cellular receptor 1, O43656); L-arginine: glycine amidinotransferase (P50440); Leptin (P41159); Lipocalin2 (NGAL, P80188); 10 (P13500); MIG (Gamma-interferon-induced monokine Q07325); MIP-1a (P10147); MIP-3a (P78556);
MIP-1beta (P13236); MIP-1d (Q16663); NAG (N-acetylbeta-D-glucosaminidase, P54802); Organic ion transporter (OCT2, O15244); Osteoprotegerin (O14788); P8 protein 15 (O60356); Plasminogen activator inhibitor 1 (PAI-1, P05121); ProANP(1-98) (P01160); Protein phosphatase 1-beta (PPI-beta, P62140); Rab GDI-beta (P50395); Renal kallikrein (Q86U61); RT1.B-1 (alpha) chain of the integral membrane protein (O5Y7A8); Soluble tumor necrosis factor 20 receptor superfamily member 1A (sTNFR-I, P19438); Soluble tumor necrosis factor receptor superfamily member 1B (sTNFR-II, P20333); Tissue inhibitor of metalloproteinases 3 (TIMP-3, P35625); uPAR (Q03405) may be combined with the kidney injury marker assay result(s) of the 25 present invention. Other clinical indicia which may be combined with the kidney injury marker assay result(s) of the present invention includes demographic information (e.g., weight, sex, age, race), medical history (e.g., family history, type of surgery, 30 pre-existing disease such as aneurism, congestive heart failure, preeclampsia, eclampsia, diabetes mellitus, hypertension, coronary artery disease, proteinuria, renal insufficiency, or sepsis, type of toxin exposure such as NSAIDs, cyclosporines, tacrolimus, aminoglycosides, foscarnet, eth- 35 ylene glycol, hemoglobin, myoglobin, ifosfamide, heavy metals, methotrexate, radiopaque contrast agents, or streptozotocin), clinical variables (e.g., blood pressure, temperature, respiration rate), risk scores (APACHE score, PRE-DICT score, TIMI Risk Score for UA/NSTEMI, 40 Framingham Risk Score), a urine total protein measurement, a glomerular filtration rate, an estimated glomerular filtration rate, a urine production rate, a serum or plasma creatinine concentration, a renal papillary antigen 1 (RPA1) measurement; a renal papillary antigen 2 (RPA2) measure- 45 ment; a urine creatinine concentration, a fractional excretion of sodium, a urine sodium concentration, a urine creatinine to serum or plasma creatinine ratio, a urine specific gravity, a urine osmolality, a urine urea nitrogen to plasma urea nitrogen ratio, a plasma BUN to creatnine ratio, and/or a 50 renal failure index calculated as urine sodium/(urine creatinine/plasma creatinine). Other measures of renal function which may be combined with the kidney injury marker assay result(s) are described hereinafter and in Harrison's Principles of Internal Medicine, 17th Ed., McGraw Hill, New 55 York, pages 1741-1830, and Current Medical Diagnosis & Treatment 2008, 47th Ed, McGraw Hill, New York, pages 785-815, each of which are hereby incorporated by reference in their entirety. Combining assay results/clinical indicia in this manner 60 can comprise the use of multivariate logistical regression, loglinear modeling, neural network analysis, n-of-m analysis, decision tree analysis, etc. This list is not meant to be limiting. Diagnosis of Acute Renal Failure As noted above, the terms "acute renal (or kidney) injury" and "acute renal (or kidney) failure" as used herein are 36 defined in part in terms of changes in serum creatinine from a baseline value. Most definitions of ARF have common elements, including the use of serum creatinine and, often, urine output. Patients may present with renal dysfunction without an available baseline measure of renal function for use in this comparison. In such an event, one may estimate a baseline serum creatinine value by assuming the patient initially had a normal GFR. Glomerular filtration rate (GFR) is the volume of fluid filtered from the renal (kidney) glomerular capillaries into the Bowman's capsule per unit time. Glomerular filtration rate (GFR) can be calculated by measuring any chemical that has a steady level in the blood, and is freely filtered but neither reabsorbed nor secreted by the kidneys. GFR is typically expressed in units of ml/min: $$GFR = \frac{\text{Urine Concentration} \times \text{Urine Flow}}{\text{Plasma Concentration}}$$ By normalizing the GFR to the body surface area, a GFR of approximately 75-100 ml/min per $1.73~\text{m}^2$ can be assumed. The rate therefore measured is the quantity of the substance in the urine that originated from a calculable volume of blood. There are several different techniques used to calculate or estimate the glomerular filtration rate (GFR or eGFR). In clinical practice, however, creatinine clearance is used to measure GFR. Creatinine is produced naturally by the body (creatinine is a metabolite of creatine, which is found in muscle). It is freely filtered by the glomerulus, but also actively secreted by the renal tubules in very small amounts such that creatinine clearance overestimates actual GFR by 10-20%. This margin of error is acceptable considering the ease with which creatinine clearance is measured. Creatinine clearance (CCr) can be calculated if values for creatinine's urine concentration (U_{Cr}), urine flow rate (V), and creatinine's plasma concentration (P_{Cr}) are known. Since the product of urine concentration and urine flow rate yields creatinine's excretion rate, creatinine clearance is also said to be its excretion rate ($U_{Cr} \times V$) divided by its plasma concentration. This is commonly represented mathematically as: $$C_{Cr} = \frac{U_{Cr} \times V}{P_{Cr}}$$ Commonly a 24 hour urine collection is undertaken, from empty-bladder one morning to the contents of the bladder the following morning, with a comparative blood test then taken: $$C_{C_r} = \frac{U_{Cr} \times 24\text{-hour volume}}{P_{Cr} \times 24 \times 60 \text{ mins}}$$ To allow comparison of results between people of different sizes, the CCr is often corrected for the body surface area (BSA) and expressed compared to the average sized man as ml/min/1.73 m2. While most adults have a BSA that approaches 1.7 (1.6-1.9), extremely obese or slim patients should have their CCr corrected for their actual BSA: $$C_{Cr-corrected} = \frac{C_{Cr} \times 1.73}{BSA}$$ The accuracy of a creatinine clearance measurement (even when collection is complete) is limited because as glomerular filtration rate (GFR) falls creatinine secretion is increased, and thus the rise in serum creatinine is less. Thus, creatinine excretion is much greater than the filtered load, resulting in a potentially large overestimation of the GFR (as much as a twofold difference). However, for clinical purposes it is important to determine whether renal function is stable or getting worse or better. This is often determined by monitoring serum creatinine alone. Like creatinine clearance, the serum creatinine will not be an accurate reflection of GFR in the non-steady-state condition of ARF. Nonetheless, the degree to which serum creatinine changes from baseline will reflect the change in GFR. Serum creatinine is readily and easily measured and it is specific for renal function. For purposes of determining urine output on a Urine output on a mL/kg/hr basis, hourly urine collection and measurement is adequate. In the case where, for example, 20 only a cumulative 24-h output was available and no patient weights are provided, minor modifications of the RIFLE urine output criteria have been described. For example, Bagshaw et al., *Nephrol. Dial. Transplant.* 23: 1203-1210, 2008, assumes an average patient weight of 70 kg, and 25 patients are assigned a RIFLE classification based on the following: <35 mL/h (Risk), <21 mL/h (Injury) or <4 mL/h (Failure). #### Selecting a Treatment Regimen Once a diagnosis is obtained, the clinician can readily select a treatment regimen that is compatible with the diagnosis, such as initiating renal replacement therapy, withdrawing delivery of compounds that are known to be damaging to the kidney, kidney transplantation, delaying or avoiding procedures that are known to be damaging to the kidney, modifying diuretic administration, initiating goal directed therapy, etc. The skilled artisan is aware of appropriate treatments for numerous diseases discussed in relation to the methods of diagnosis described herein. See, e.g., 40 Merck Manual of Diagnosis and Therapy, 17th Ed. Merck Research Laboratories, Whitehouse Station, NJ, 1999. In addition, since the methods and compositions described herein provide prognostic information, the markers of the present invention may be used to monitor a course of 45 treatment. For example, improved or worsened prognostic state may indicate that a particular treatment is or is not efficacious. One skilled in the art readily appreciates that the present invention is well adapted to carry out the objects and obtain 50 the ends and advantages mentioned, as well as those inherent therein. The examples provided herein are representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention. #### Example 1 #### Contrast-Induced Nephropathy Sample Collection The objective of this sample collection study is to collect samples of plasma and urine and clinical data from patients before and after receiving intravascular contrast media. Approximately 250 adults undergoing radiographic/angiographic procedures involving intravascular administration of iodinated contrast media are enrolled. To be enrolled in the study, each patient must meet all of the following inclusion criteria and none of the following exclusion criteria: 60 of dialysis—12.8%. Cardiac The objective of t samples of plasma a 38 Inclusion Criteria males and females 18 years of age or older; undergoing a radiographic/angiographic procedure (such as a CT scan or coronary intervention) involving the intravascular administration of contrast media; expected to be hospitalized for at least 48 hours after contrast administration. able and willing to provide written informed consent for study participation and to comply with all study procedures. Exclusion Criteria renal transplant recipients; acutely worsening renal function prior to the contrast procedure: already receiving dialysis (either acute or chronic) or
in imminent need of dialysis at enrollment; expected to undergo a major surgical procedure (such as involving cardiopulmonary bypass) or an additional imaging procedure with contrast media with significant risk for further renal insult within the 48 hrs following contrast administration: participation in an interventional clinical study with an experimental therapy within the previous 30 days; known infection with human immunodeficiency virus (HIV) or a hepatitis virus. Immediately prior to the first contrast administration (and after any pre-procedure hydration), an EDTA anti-coagulated blood sample (10 mL) and a urine sample (10 mL) are collected from each patient. Blood and urine samples are then collected at 4 (±0.5), 8 (±1), 24 (±2) 48 (±2), and 72 (±2) hrs following the last administration of contrast media during the index contrast procedure. Blood is collected via direct venipuncture or via other available venous access, such as an existing femoral sheath, central venous line, peripheral intravenous line or hep-lock. These study blood samples are processed to plasma at the clinical site, frozen and shipped to Astute Medical, Inc., San Diego, Calif. The study urine samples are frozen and shipped to Astute Medical, Inc. Serum creatinine is assessed at the site immediately prior to the first contrast administration (after any pre-procedure hydration) and at 4 (±0.5), 8 (±1), 24 (±2) and 48 (±2)), and 72 (±2) hours following the last administration of contrast (ideally at the same time as the study samples are obtained). In addition, each patient's status is evaluated through day 30 with regard to additional serum and urine creatinine measurements, a need for dialysis, hospitalization status, and adverse clinical outcomes (including mortality). Prior to contrast administration, each patient is assigned a risk based on the following assessment: systolic blood pressure<80 mm Hg=5 points; intra-arterial balloon pump=5 points; congestive heart failure (Class III-IV or history of pulmonary edema)=5 points; age>75 yrs=4 points; hematocrit level<39% for men, <35% for women=3 points; diabetes=3 points; contrast media volume=1 point for each 100 mL; serum creatinine level>1.5 g/dL=4 points OR estimated GFR 40-60 mL/min/1.73 m²=2 points, 20-40 mL/min/1.73 m²=4 points. The risks assigned are as follows: risk for CIN and dialysis: 5 or less total points=risk of CIN—14%, risk of dialysis—0.04%; 6-10 total points=risk of CIN—14%, risk of dialysis—0.12%; 11-16 total points=risk of CIN—26.1%, risk of dialysis—1.09%; >16 total points=risk of CIN—57.3%, risk of dialysis—1.2 8% #### Example 2 #### Cardiac Surgery Sample Collection The objective of this sample collection study is to collect samples of plasma and urine and clinical data from patients before and after undergoing cardiovascular surgery, a procedure known to be potentially damaging to kidney function. Approximately 900 adults undergoing such surgery are enrolled. To be enrolled in the study, each patient must meet all of the following inclusion criteria and none of the following exclusion criteria: Inclusion Criteria males and females 18 years of age or older; undergoing cardiovascular surgery; Toronto/Ottawa Predictive Risk Index for Renal Replacement risk score of at least 2 (Wijeysundera et al., *JAMA* 297: 1801-9, 2007); and able and willing to provide written informed consent for study participation and to comply with all study procedures. $_{15}$ Exclusion Criteria known pregnancy; previous renal transplantation; acutely worsening renal function prior to enrollment (e.g., any category of RIFLE criteria); already receiving dialysis (either acute or chronic) or in imminent need of dialysis at enrollment; currently enrolled in another clinical study or expected to be enrolled in another clinical study within 7 days of cardiac surgery that involves drug infusion or a therapeutic intervention for AKI; known infection with human immunodeficiency virus (HIV) or a hepatitis virus. Within 3 hours prior to the first incision (and after any pre-procedure hydration), an EDTA anti-coagulated blood sample (10 mL), whole blood (3 mL), and a urine sample (35 mL) are collected from each patient. Blood and urine samples are then collected at 3 (±0.5), 6 (±0.5), 12 (±1), 24 (±2) and 48 (±2) hrs following the procedure and then daily on days 3 through 7 if the subject remains in the hospital. Blood is collected via direct venipuncture or via other available venous access, such as an existing femoral sheath, central venous line, peripheral intravenous line or hep-lock. These study blood samples are frozen and shipped to Astute Medical, Inc., San Diego, Calif. The study urine samples are frozen and shipped to Astute Medical, Inc. #### Example 3 ## Acutely Ill Subject Sample Collection The objective of this study is to collect samples from acutely ill patients. Approximately 900 adults expected to be in the ICU for at least 48 hours will be enrolled. To be 50 enrolled in the study, each patient must meet all of the following inclusion criteria and none of the following exclusion criteria: Inclusion Criteria males and females 18 years of age or older; Study population 1: approximately 300 patients that have at least one of: shock (SBP<90 mmHg and/or need for vasopressor support to maintain MAP>60 mmHg and/or documented drop in SBP of at least 40 mmHg); and sepsis; Study population 2: approximately 300 patients that have at least one of: IV antibiotics ordered in computerized physician order entry (CPOE) within 24 hours of enrollment; contrast media exposure within 24 hours of enrollment; increased Intra-Abdominal Pressure with acute decompensated heart failure; and 40 severe trauma as the primary reason for ICU admission and likely to be hospitalized in the ICU for 48 hours after enrollment: Study population 3: approximately 300 patients expected to be hospitalized through acute care setting (ICU or ED) with a known risk factor for acute renal injury (e.g. sepsis, hypotension/shock (Shock=systolic BP<90 mmHg and/or the need for vasopressor support to maintain a MAP>60 mmHg and/or a documented drop in SBP>40 mmHg), major trauma, hemorrhage, or major surgery); and/or expected to be hospitalized to the ICU for at least 24 hours after enrollment. **Exclusion Criteria** known pregnancy; 5 institutionalized individuals; previous renal transplantation; known acutely worsening renal function prior to enrollment (e.g., any category of RIFLE criteria); received dialysis (either acute or chronic) within 5 days prior to enrollment or in imminent need of dialysis at the time of enrollment: known infection with human immunodeficiency virus (HIV) or a hepatitis virus; meets only the SBP<90 mmHg inclusion criterion set forth above, and does not have shock in the attending physician's or principal investigator's opinion. After providing informed consent, an EDTA anti-coagulated blood sample (10 mL) and a urine sample (25-30 mL) are collected from each patient. Blood and urine samples are then collected at 4 (±0.5) and 8 (±1) hours after contrast administration (if applicable); at 12 (±1), 24 (±2), and 48 (±2) hours after enrollment, and thereafter daily up to day 7 to day 14 while the subject is hospitalized. Blood is collected via direct venipuncture or via other available venous access, such as an existing femoral sheath, central venous line, peripheral intravenous line or hep-lock. These study blood samples are processed to plasma at the clinical site, frozen and shipped to Astute Medical, Inc., San Diego, Calif. The study urine samples are frozen and shipped to Astute Medical, Inc. #### Example 4 #### Immunoassay Format Analytes are is measured using standard sandwich enzyme immunoassay techniques. A first antibody which binds the analyte is immobilized in wells of a 96 well polystyrene microplate. Analyte standards and test samples are pipetted into the appropriate wells and any analyte present is bound by the immobilized antibody. After washing away any unbound substances, a horseradish peroxidaseconjugated second antibody which binds the analyte is added to the wells, thereby forming sandwich complexes 55 with the analyte (if present) and the first antibody. Following a wash to remove any unbound antibody-enzyme reagent, a substrate solution comprising tetramethylbenzidine and hydrogen peroxide is added to the wells. Color develops in proportion to the amount of analyte present in the sample. The color development is stopped and the intensity of the color is measured at 540 nm or 570 nm. An analyte concentration is assigned to the test sample by comparison to a standard curve determined from the analyte standards. Concentrations are expressed in the following examples as follows: Clusterin ng/mL, Heart-type fatty acid binding protein ng/mL, Hepatocyte growth factor pg/mL, Interferon gamma pg/mL, Interleukin-12 subunit beta pg/mL, Interleu- kin-16 pg/mL, Interleukin-2 pg/mL, 72 kDa type IV collagenase ng/mL, Matrix metalloproteinase-9 pg/mL (urine) and ng/mL (plasma), Midkine ng/mL, and Serum amyloid P-component ng/mL. #### Example 5 #### Apparently Healthy Donor and Chronic Disease Patient Samples Human urine samples from donors with no known chronic or acute disease ("Apparently Healthy Donors") were purchased from two vendors (Golden West Biologicals, Inc., 27625 Commerce Center Dr., Temecula, Calif. 92590 and Virginia Medical Research, Inc., 915 First Colonial Rd., 15 Virginia Beach, Va. 23454). The urine samples were shipped and stored frozen at less than –20° C. The vendors supplied demographic information for the individual donors including gender, race (Black/White), smoking status and age. Human urine samples from donors with various chronic ²⁰ diseases ("Chronic Disease Patients") including congestive heart failure, coronary artery disease, chronic kidney disease, chronic obstructive pulmonary disease, diabetes mellitus and hypertension were purchased from Virginia Medical
Research, Inc., 915 First Colonial Rd., Virginia Beach, ²⁵ Va. 23454. The urine samples were shipped and stored frozen at less than –20 degrees centigrade. The vendor provided a case report form for each individual donor with age, gender, race (Black/White), smoking status and alcohol use, height, weight, chronic disease(s) diagnosis, current ³⁰ medications and previous surgeries. ## Example 6 # Kidney Injury Markers for Evaluating Renal Status in Patients at RIFLE Stage 0 Patients from the intensive care unit (ICU) were classified by kidney status as non-injury (0), risk of injury (R), injury (I), and failure (F) according to the maximum stage reached 40 within 7 days of enrollment as determined by the RIFLE criteria. Two cohorts were defined as (Cohort 1) patients that did not progress beyond stage 0, and (Cohort 2) patients that reached stage R, I, or F within 10 days. To address normal 45 marker fluctuations that occur within patients at the ICU and thereby assess utility for monitoring AKI status, marker levels were measured in urine samples collected for Cohort 1. Marker concentrations were measured in urine samples collected from a subject at 0, 24 hours, and 48 hours prior 50 to reaching stage R, I or F in Cohort 2. In the following tables, the time "prior max stage" represents the time at which a sample is collected, relative to the time a particular patient reaches the lowest disease stage as defined for that cohort, binned into three groups which are +/-12 hours. For 55 example, 24 hr prior for this example (0 vs R, I, F) would mean 24 hr (+/-12 hours) prior to reaching stage R (or I if no sample at R, or F if no sample at R or I). Each marker was measured by standard immunoassay methods using commercially available assay reagents. A 60 receiver operating characteristic (ROC) curve was generated for each marker and the area under each ROC curve (AUC) was determined. Patients in Cohort 2 were also separated according to the reason for adjudication to stage R, I, or F as being based on serum creatinine measurements (sCr), 65 being based on urine output (UO), or being based on either serum creatinine measurements or urine output. That is, for 42 those patients adjudicated to stage R, I, or F on the basis of serum creatinine measurements alone, the stage 0 cohort may have included patients adjudicated to stage R, I, or F on the basis of urine output; for those patients adjudicated to stage R, I, or F on the basis of urine output alone, the stage 0 cohort may have included patients adjudicated to stage R, I, or F on the basis of serum creatinine measurements; and for those patients adjudicated to stage R, I, or F on the basis of serum creatinine measurements or urine output, the stage 0 cohort contains only patients in stage 0 for both serum creatinine measurements and urine output. Also, for those patients adjudicated to stage R, I, or F on the basis of serum creatinine measurements or urine output, the adjudication method which yielded the most severe RIFLE stage was used. The ability to distinguish cohort 1 (subjects remaining in RIFLE 0) from Cohort 2 (subjects progressing to RIFLE R, I or F) was determined using ROC analysis. SE is the standard error of the AUC, n is the number of sample or individual patients ("pts," as indicated). Standard errors were calculated as described in Hanley, J. A., and McNeil, B. J., The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology (1982) 143: 29-36; p values were calculated with a two-tailed Z-test. An AUC<0.5 is indicative of a negative going marker for the comparison, and an AUC>0.5 is indicative of a positive going marker for the comparison. Various threshold (or "cutoff") concentrations were selected, and the associated sensitivity and specificity for distinguishing cohort 1 from cohort 2 were determined. OR is the odds ratio calculated for the particular cutoff concentration, and 95% CI is the confidence interval for the odds ratio The results of these three analyses for various markers of the present invention are presented in FIG. 1. ## Example 7 # Kidney Injury Markers for Evaluating Renal Status in Patients at RIFLE Stages 0 and R Patients were classified and analyzed as described in Example 6. However, patients that reached stage R but did not progress to stage I or F were grouped with patients from non-injury stage 0 in Cohort 1. Cohort 2 in this example included only patients that progressed to stage I or F. Marker concentrations in urine samples were included for Cohort 1. Marker concentrations in urine samples collected within 0, 24, and 48 hours of reaching stage I or F were included for Cohort 2. The ability to distinguish cohort 1 (subjects remaining in RIFLE 0 or R) from Cohort 2 (subjects progressing to RIFLE I or F) was determined using ROC analysis. Various threshold (or "cutoff") concentrations were selected, and the associated sensitivity and specificity for distinguishing cohort 1 from cohort 2 were determined. OR is the odds ratio calculated for the particular cutoff concentration, and 95% CI is the confidence interval for the odds ratio. The results of these three analyses for various markers of the present invention are presented in FIG. 2. #### Example 8 Kidney Injury Markers for Evaluating Renal Status in Patients Progressing from Stage R to Stages I and F Patients were classified and analyzed as described in Example 6, but only those patients that reached Stage R were included in this example. Cohort 1 contained patients that reached stage R but did not progress to stage I or F within 10 days, and Cohort 2 included only patients that progressed to stage I or F. Marker concentrations in urine samples collected within 12 hours of reaching stage R were 5 included in the analysis for both Cohort 1 and 2. The ability to distinguish cohort 1 (subjects remaining in RIFLE R) from Cohort 2 (subjects progressing to RIFLE I or F) was determined using ROC analysis. Various threshold (or "cutoff") concentrations were ¹⁰ selected, and the associated sensitivity and specificity for distinguishing cohort 1 from cohort 2 were determined. OR is the odds ratio calculated for the particular cutoff concentration, and 95% CI is the confidence interval for the odds ratio. The results of these three analyses for various markers of the present invention are presented in FIG. 3. #### Example 9 Kidney Injury Markers for Evaluating Renal Status in Patients at RIFLE Stage 0 Patients were classified and analyzed as described in Example 6. However, patients that reached stage R or I but 25 did not progress to stage F were eliminated from the analysis. Patients from non-injury stage 0 are included in Cohort 1. Cohort 2 in this example included only patients that progressed to stage F. The maximum marker concentrations in urine samples were included for each patient in 30 Cohort 1. The maximum marker concentrations in urine samples collected within 0, 24, and 48 hours of reaching stage F were included for each patient in Cohort 2. The ability to distinguish cohort 1 (subjects remaining in RIFLE 0 or R) from Cohort 2 (subjects progressing to ³⁵ RIFLE I or F) was determined using ROC analysis. Various threshold (or "cutoff") concentrations were selected, and the associated sensitivity and specificity for distinguishing cohort 1 from cohort 2 were determined. OR is the odds ratio calculated for the particular cutoff concentration, and 95% CI is the confidence interval for the odds ratio. The results of these three analyses for various markers of the present invention are presented in FIG. 4. #### Example 10 Kidney Injury Markers for Evaluating Renal Status in Patients at RIFLE Stage 0 Patients from the intensive care unit (ICU) were classified by kidney status as non-injury (0), risk of injury (R), injury (I), and failure (F) according to the maximum stage reached within 7 days of enrollment as determined by the RIFLE criteria. Two cohorts were defined as (Cohort 1) patients that did not progress beyond stage 0, and (Cohort 2) patients that reached stage R, I, or F within 10 days. To address normal marker fluctuations that occur within patients at the ICU and thereby assess utility for monitoring AKI status, marker 60 levels were measured in the plasma component of blood samples collected for Cohort 1. Marker concentrations were measured in the plasma component of blood samples collected from a subject at 0, 24 hours, and 48 hours prior to reaching stage R, I or F in Cohort 2. In the following tables, 65 the time "prior max stage" represents the time at which a sample is collected, relative to the time a particular patient 44 reaches the lowest disease stage as defined for that cohort, binned into three groups which are ± 12 hours. For example, 24 hr prior for this example (0 vs R, I, F) would mean 24 hr (± 12 hours) prior to reaching stage R (or I if no sample at R, or F if no sample at R or I). Each marker was measured by standard immunoassay methods using commercially available assay reagents. A receiver operating characteristic (ROC) curve was generated for each marker and the area under each ROC curve (AUC) was determined. Patients in Cohort 2 were also separated according to the reason for adjudication to stage R, I, or F as being based on serum creatinine measurements (sCr), being based on urine output (UO), or being based on either serum creatinine measurements or urine output. That is, for those patients adjudicated to stage R, I, or F on the basis of serum creatinine measurements alone, the stage 0 cohort may have included patients adjudicated to stage R, I, or F on the basis of urine output; for those patients adjudicated to stage R, I, or F on the basis of urine output alone, the stage 0 cohort may have included patients adjudicated to stage R, I, or F on the basis of serum creatinine measurements; and for those patients adjudicated to stage R, I, or F on the basis of serum creatinine measurements or
urine output, the stage 0 cohort contains only patients in stage 0 for both serum creatinine measurements and urine output. Also, for those patients adjudicated to stage R, I, or F on the basis of serum creatinine measurements or urine output, the adjudication method which yielded the most severe RIFLE stage was used. The ability to distinguish cohort 1 (subjects remaining in RIFLE 0) from Cohort 2 (subjects progressing to RIFLE R, I or F) was determined using ROC analysis. SE is the standard error of the AUC, n is the number of sample or individual patients ("pts," as indicated). Standard errors were calculated as described in Hanley, J. A., and McNeil, B. J., The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology (1982) 143: 29-36; p values were calculated with a two-tailed Z-test. An AUC<0.5 is indicative of a negative going marker for the comparison, and an AUC>0.5 is indicative of a positive going marker for the comparison. Various threshold (or "cutoff") concentrations were selected, and the associated sensitivity and specificity for distinguishing cohort 1 from cohort 2 were determined. OR is the odds ratio calculated for the particular cutoff concentration, and 95% CI is the confidence interval for the odds ratio. The results of these three analyses for various markers of the present invention are presented in FIG. 5. #### Example 11 Kidney Injury Markers for Evaluating Renal Status in Patients at RIFLE Stages 0 and R Patients were classified and analyzed as described in Example 10. However, patients that reached stage R but did not progress to stage I or F were grouped with patients from non-injury stage 0 in Cohort 1. Cohort 2 in this example included only patients that progressed to stage I or F. Marker concentrations in the plasma component of blood samples were included for Cohort 1. Marker concentrations in the plasma component of blood samples collected within 0, 24, and 48 hours of reaching stage I or F were included for Cohort 2. The ability to distinguish cohort 1 (subjects remaining in RIFLE 0 or R) from Cohort 2 (subjects progressing to RIFLE I or F) was determined using ROC analysis. Various threshold (or "cutoff") concentrations were selected, and the associated sensitivity and specificity for 5 distinguishing cohort 1 from cohort 2 were determined. OR is the odds ratio calculated for the particular cutoff concentration, and 95% CI is the confidence interval for the odds ratio The results of these three analyses for various markers of 10 the present invention are presented in FIG. 6. #### Example 12 Kidney Injury Markers for Evaluating Renal Status in Patients Progressing from Stage R to Stages I and F Patients were classified and analyzed as described in Example 10, but only those patients that reached Stage R 20 were included in this example. Cohort 1 contained patients that reached stage R but did not progress to stage I or F within 10 days, and Cohort 2 included only patients that progressed to stage I or F. Marker concentrations in the plasma component of blood samples collected within 12 25 hours of reaching stage R were included in the analysis for both Cohort 1 and 2. The ability to distinguish cohort 1 (subjects remaining in RIFLE R) from Cohort 2 (subjects progressing to RIFLE I or F) was determined using ROC analysis. Various threshold (or "cutoff") concentrations were selected, and the associated sensitivity and specificity for distinguishing cohort 1 from cohort 2 were determined. OR is the odds ratio calculated for the particular cutoff concentration, and 95% CI is the confidence interval for the odds 35 ratio. The results of these three analyses for various markers of the present invention are presented in FIG. 7. #### Example 13 Kidney Injury Markers for Evaluating Renal Status in Patients at RIFLE Stage 0 Patients were classified and analyzed as described in 45 Example 10. However, patients that reached stage R or I but did not progress to stage F were eliminated from the analysis. Patients from non-injury stage 0 are included in Cohort 1. Cohort 2 in this example included only patients that progressed to stage F. The maximum marker concentrations in the plasma component of blood samples were included from each patient in Cohort 1. The maximum marker concentrations in the plasma component of blood samples collected within 0, 24, and 48 hours of reaching stage F were included from each patient in Cohort 2. 46 The ability to distinguish cohort 1 (subjects remaining in RIFLE 0 or R) from Cohort 2 (subjects progressing to RIFLE I or F) was determined using ROC analysis. Various threshold (or "cutoff") concentrations were selected, and the associated sensitivity and specificity for distinguishing cohort 1 from cohort 2 were determined. OR is the odds ratio calculated for the particular cutoff concentration, and 95% CI is the confidence interval for the odds ratio. The results of these three analyses for various markers of the present invention are presented in FIG. 8. While the invention has been described and exemplified in sufficient detail for those skilled in this art to make and use it, various alternatives, modifications, and improvements should be apparent without departing from the spirit and scope of the invention. The examples provided herein are representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention. Modifications therein and other uses will occur to those skilled in the art. These modifications are encompassed within the spirit of the invention and are defined by the scope of the claims. It will be readily apparent to a person skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention. All patents and publications mentioned in the specification are indicative of the levels of those of ordinary skill in the art to which the invention pertains. All patents and publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference. The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. Thus, for example, in each instance herein any of the terms "comprising", "consisting essentially of" and "consisting of" may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended Other embodiments are set forth within the following claims. SEQUENCE LISTING <160> NUMBER OF SEQ ID NOS: 11 <210> SEO ID NO 1 <211> LENGTH: 449 <212> TYPE: PRT <213> ORGANISM: Homo sapiens | Met
1 | Met | Lys | Thr | Leu
5 | Leu | Leu | Phe | Val | Gly
10 | Leu | Leu | Leu | Thr | Trp
15 | Glu | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Ser | Gly | Gln | Val
20 | Leu | Gly | Asp | Gln | Thr
25 | Val | Ser | Asp | Asn | Glu
30 | Leu | Gln | | Glu | Met | Ser
35 | Asn | Gln | Gly | Ser | Lys
40 | Tyr | Val | Asn | Lys | Glu
45 | Ile | Gln | Asn | | Ala | Val
50 | Asn | Gly | Val | Lys | Gln
55 | Ile | Lys | Thr | Leu | Ile
60 | Glu | ГЛа | Thr | Asn | | Glu
65 | Glu | Arg | Lys | Thr | Leu
70 | Leu | Ser | Asn | Leu | Glu
75 | Glu | Ala | Lys | Lys | 80
Tàa | | Lys | Glu | Asp | Ala | Leu
85 | Asn | Glu | Thr | Arg | Glu
90 | Ser | Glu | Thr | Lys | Leu
95 | ГÀв | | Glu | Leu | Pro | Gly
100 | Val | СЛа | Asn | Glu | Thr
105 | Met | Met | Ala | Leu | Trp
110 | Glu | Glu | | CÀa | Lys | Pro
115 | CÀa | Leu | ГЛа | Gln | Thr
120 | Cya | Met | Lys | Phe | Tyr
125 | Ala | Arg | Val | | Cys | Arg
130 | Ser | Gly | Ser | Gly | Leu
135 | Val | Gly | Arg | Gln | Leu
140 | Glu | Glu | Phe | Leu | | Asn
145 | Gln | Ser | Ser | Pro | Phe
150 | Tyr | Phe | Trp | Met | Asn
155 | Gly | Asp | Arg | Ile | Asp
160 | | Ser | Leu | Leu | Glu | Asn
165 | Asp | Arg | Gln | Gln | Thr
170 | His | Met | Leu | Asp | Val
175 | Met | | Gln | Asp | His | Phe
180 | Ser | Arg | Ala | Ser | Ser
185 | Ile | Ile | Asp | Glu | Leu
190 | Phe | Gln | | Asp | Arg | Phe
195 | Phe | Thr | Arg | Glu | Pro
200 | Gln | Asp | Thr | Tyr | His
205 | Tyr | Leu | Pro | | Phe | Ser
210 | Leu | Pro | His | Arg | Arg
215 | Pro | His | Phe | Phe | Phe
220 | Pro | Lys | Ser | Arg | | Ile
225 | Val | Arg | Ser | Leu | Met
230 | Pro | Phe | Ser | Pro | Tyr
235 | Glu | Pro | Leu | Asn | Phe
240 | | His | Ala | Met | Phe | Gln
245 | Pro | Phe | Leu | Glu | Met
250 | Ile | His | Glu | Ala | Gln
255 | Gln | | Ala | Met | Asp | Ile
260 | His | Phe | His | Ser | Pro
265 | Ala | Phe | Gln | His | Pro
270 | Pro | Thr | | Glu | Phe | Ile
275 | Arg | Glu | Gly | Asp | Asp
280 | Asp | Arg | Thr | Val | Сув
285 | Arg | Glu | Ile | | Arg | His
290 | Asn | Ser | Thr | Gly | Сув
295 | Leu | Arg | Met | Lys | Asp
300 | Gln | Cys | Asp | Lys | |
Сув
305 | Arg | Glu | Ile | Leu | Ser
310 | Val | Aap | Сла | Ser | Thr
315 | Asn | Asn | Pro | Ser | Gln
320 | | Ala | Lys | Leu | Arg | Arg
325 | Glu | Leu | Aap | Glu | Ser
330 | Leu | Gln | Val | Ala | Glu
335 | Arg | | Leu | Thr | Arg | Lys
340 | Tyr | Asn | Glu | Leu | Leu
345 | Lys | Ser | Tyr | Gln | Trp
350 | Lys | Met | | Leu | Asn | Thr
355 | Ser | Ser | Leu | Leu | Glu
360 | Gln | Leu | Asn | Glu | Gln
365 | Phe | Asn | Trp | | Val | Ser
370 | Arg | Leu | Ala | Asn | Leu
375 | Thr | Gln | Gly | Glu | 380 | Gln | Tyr | Tyr | Leu | | Arg
385 | Val | Thr | Thr | Val | Ala
390 | Ser | His | Thr | Ser | Asp
395 | Ser | Asp | Val | Pro | Ser
400 | | Gly | Val | Thr | Glu | Val
405 | Val | Val | Lys | Leu | Phe
410 | Asp | Ser | Asp | Pro | Ile
415 | Thr | -continued ``` Val Thr Val Pro Val Glu Val Ser Arg Lys Asn Pro Lys Phe Met Glu Thr Val Ala Glu Lys Ala Leu Gln Glu Tyr Arg Lys Lys His Arg Glu Glu <210> SEQ ID NO 2 <211> LENGTH: 133 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 2 Met Val Asp Ala Phe Leu Gly Thr Trp Lys Leu Val Asp Ser Lys Asn 1 10 15 Phe Asp Asp Tyr Met Lys Ser Leu Gly Val Gly Phe Ala Thr Arg Gln 20 25 30 Val Ala Ser Met Thr Lys Pro Thr Thr Ile Ile Glu Lys Asn Gly Asp Ile Leu Thr Leu Lys Thr His Ser Thr Phe Lys Asn Thr Glu Ile Ser 55 Phe Lys Leu Gly Val Glu Phe Asp Glu Thr Thr Ala Asp Asp Arg Lys Val Lys Ser Ile Val Thr Leu Asp Gly Gly Lys Leu Val His Leu Gln Lys Trp Asp Gly Gln Glu Thr Thr Leu Val Arg Glu Leu Ile Asp Gly 105 Lys Leu Ile Leu Thr Leu Thr His Gly Thr Ala Val Cys Thr Arg Thr 115 120 Tyr Glu Lys Glu Ala 130 <210> SEQ ID NO 3 <211> LENGTH: 728 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 3 Met Trp Val Thr Lys Leu Leu Pro Ala Leu Leu Gln His Val Leu 10 Leu His Leu Leu Leu Pro Ile Ala Ile Pro Tyr Ala Glu Gly Gln Arg Lys Arg Arg Asn Thr Ile His Glu Phe Lys Lys Ser Ala Lys Thr Thr Leu Ile Lys Ile Asp Pro Ala Leu Lys Ile Lys Thr Lys Lys Val Asn Thr Ala Asp Gln Cys Ala Asn Arg Cys Thr Arg Asn Lys Gly Leu 65 70 75 80 Pro Phe Thr Cys Lys Ala Phe Val Phe Asp Lys Ala Arg Lys Gln Cys Leu Trp Phe Pro Phe Asn Ser Met Ser Ser Gly Val Lys Lys Glu Phe 105 Gly His Glu Phe Asp Leu Tyr Glu Asn Lys Asp Tyr Ile Arg Asn Cys Ile Ile Gly Lys Gly Arg Ser Tyr Lys Gly Thr Val Ser Ile Thr Lys ``` Ser Gly Ile Lys Cys Gln Pro Trp Ser Ser Met Ile Pro His Glu His | _ | | | | | | | | | | | | | | | | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | 145 | | | | | 150 | | | | | 155 | | | | | 160 | | Ser | Phe | Leu | Pro | Ser
165 | Ser | Tyr | Arg | Gly | Lys
170 | Asp | Leu | Gln | Glu | Asn
175 | Tyr | | Cys | Arg | Asn | Pro
180 | Arg | Gly | Glu | Glu | Gly
185 | Gly | Pro | Trp | Сув | Phe
190 | Thr | Ser | | Asn | Pro | Glu
195 | Val | Arg | Tyr | Glu | Val
200 | Сув | Asp | Ile | Pro | Gln
205 | Сув | Ser | Glu | | Val | Glu
210 | Сув | Met | Thr | CAa | Asn
215 | Gly | Glu | Ser | Tyr | Arg
220 | Gly | Leu | Met | Asp | | His
225 | Thr | Glu | Ser | Gly | Lys
230 | Ile | Cys | Gln | Arg | Trp
235 | Asp | His | Gln | Thr | Pro
240 | | His | Arg | His | Lys | Phe
245 | Leu | Pro | Glu | Arg | Tyr
250 | Pro | Asp | Lys | Gly | Phe
255 | Asp | | Asp | Asn | Tyr | Cys
260 | Arg | Asn | Pro | Asp | Gly
265 | Gln | Pro | Arg | Pro | Trp
270 | Cys | Tyr | | Thr | Leu | Asp
275 | Pro | His | Thr | Arg | Trp
280 | Glu | Tyr | Cys | Ala | Ile
285 | Lys | Thr | CÀa | | Ala | Asp
290 | Asn | Thr | Met | Asn | Asp
295 | Thr | Asp | Val | Pro | Leu
300 | Glu | Thr | Thr | Glu | | Cys
305 | Ile | Gln | Gly | Gln | Gly
310 | Glu | Gly | Tyr | Arg | Gly
315 | Thr | Val | Asn | Thr | Ile
320 | | Trp | Asn | Gly | Ile | Pro
325 | CAa | Gln | Arg | Trp | 330
330 | Ser | Gln | Tyr | Pro | His
335 | Glu | | His | Asp | Met | Thr
340 | Pro | Glu | Asn | Phe | Lys
345 | Cys | Lys | Asp | Leu | Arg
350 | Glu | Asn | | Tyr | Cys | Arg
355 | Asn | Pro | Asp | Gly | Ser
360 | Glu | Ser | Pro | Trp | 365
365 | Phe | Thr | Thr | | Asp | Pro
370 | Asn | Ile | Arg | Val | Gly
375 | Tyr | CAa | Ser | Gln | Ile
380 | Pro | Asn | CÀa | Asp | | Met
385 | Ser | His | Gly | Gln | 390 | CÀa | Tyr | Arg | Gly | Asn
395 | Gly | Lys | Asn | Tyr | Met
400 | | Gly | Asn | Leu | Ser | Gln
405 | Thr | Arg | Ser | Gly | Leu
410 | Thr | CAa | Ser | Met | Trp
415 | Asp | | Lys | Asn | Met | Glu
420 | Asp | Leu | His | Arg | His
425 | Ile | Phe | Trp | Glu | Pro
430 | Asp | Ala | | Ser | Lys | Leu
435 | Asn | Glu | Asn | Tyr | Cys
440 | Arg | Asn | Pro | Asp | Asp
445 | Asp | Ala | His | | Gly | Pro
450 | Trp | Cys | Tyr | Thr | Gly
455 | Asn | Pro | Leu | Ile | Pro
460 | Trp | Asp | Tyr | CÀa | | Pro
465 | Ile | Ser | Arg | CAa | Glu
470 | Gly | Asp | Thr | Thr | Pro
475 | Thr | Ile | Val | Asn | Leu
480 | | Asp | His | Pro | Val | Ile
485 | Ser | Cys | Ala | Lys | Thr
490 | Lys | Gln | Leu | Arg | Val
495 | Val | | Asn | Gly | Ile | Pro
500 | Thr | Arg | Thr | Asn | Ile
505 | Gly | Trp | Met | Val | Ser
510 | Leu | Arg | | Tyr | Arg | Asn
515 | Lys | His | Ile | CAa | Gly
520 | Gly | Ser | Leu | Ile | Lув
525 | Glu | Ser | Trp | | Val | Leu
530 | Thr | Ala | Arg | Gln | Сув
535 | Phe | Pro | Ser | Arg | Asp
540 | Leu | Lys | Asp | Tyr | | Glu
545 | Ala | Trp | Leu | Gly | Ile
550 | His | Asp | Val | His | Gly
555 | Arg | Gly | Asp | Glu | Lys
560 | | CAa | Lys | Gln | Val | Leu
565 | Asn | Val | Ser | Gln | Leu
570 | Val | Tyr | Gly | Pro | Glu
575 | Gly | | | | | | | | | | | | | | | | | | Ser Asp Leu Val Leu Met Lys Leu Ala Arg Pro Ala Val Leu Asp Asp 585 Phe Val Ser Thr Ile Asp Leu Pro Asn Tyr Gly Cys Thr Ile Pro Glu Lys Thr Ser Cys Ser Val Tyr Gly Trp Gly Tyr Thr Gly Leu Ile Asn Tyr Asp Gly Leu Leu Arg Val Ala His Leu Tyr Ile Met Gly Asn Glu Lys Cys Ser Gln His His Arg Gly Lys Val Thr Leu Asn Glu Ser Glu Ile Cys Ala Gly Ala Glu Lys Ile Gly Ser Gly Pro Cys Glu Gly Asp \$660\$Tyr Gly Gly Pro Leu Val Cys Glu Gln His Lys Met Arg Met Val Leu Gly Val Ile Val Pro Gly Arg Gly Cys Ala Ile Pro Asn Arg Pro Gly 695 Ile Phe Val Arg Val Ala Tyr Tyr Ala Lys Trp Ile His Lys Ile Ile 705 710 710 720 Leu Thr Tyr Lys Val Pro Gln Ser 725 <210> SEQ ID NO 4 <211> LENGTH: 166 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 4 Met Lys Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Ile Val Leu 10 Gly Ser Leu Gly Cys Tyr Cys Gln Asp Pro Tyr Val Lys Glu Ala Glu Asn Leu Lys Lys Tyr Phe Asn Ala Gly His Ser Asp Val Ala Asp Asn Gly Thr Leu Phe Leu Gly Ile Leu Lys Asn Trp Lys Glu Glu Ser Asp Arg Lys Ile Met Gln Ser Gln Ile Val Ser Phe Tyr Phe Lys Leu Phe Lys Asn Phe Lys Asp Asp Gln Ser Ile Gln Lys Ser Val Glu Thr Ile Lys Glu Asp Met Asn Val Lys Phe Phe Asn Ser Asn Lys Lys Lys Arg Asp Asp Phe Glu Lys Leu Thr Asn Tyr Ser Val Thr Asp Leu Asn Val Gln Arg Lys Ala Ile His Glu Leu Ile Gln Val Met Ala Glu Leu Ser Pro Ala Ala Lys Thr Gly Lys Arg Lys Arg Ser Gln Met Leu Phe Arg 150 155 Gly Arg Arg Ala Ser Gln 165 <210> SEQ ID NO 5 <211> LENGTH: 328 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 5 Met Cys His Gln Gln Leu Val Ile Ser Trp Phe Ser Leu Val Phe Leu Ala Ser Pro Leu Val Ala Ile Trp Glu Leu Lys Lys Asp Val Tyr Val Val Glu Leu Asp Trp Tyr Pro Asp Ala Pro Gly Glu Met Val Val Leu Thr Cys Asp Thr Pro Glu Glu Asp Gly Ile Thr Trp Thr Leu Asp Gln Ser Ser Glu Val Leu Gly Ser Gly Lys Thr Leu Thr Ile Gln Val Lys Glu Phe Gly Asp Ala Gly Gln Tyr Thr Cys His Lys Gly Gly Glu Val\$85\$ 90 95Leu Ser His Ser Leu Leu Leu His Lys Lys Glu Asp Gly Ile Trp Ser Thr Asp Ile Leu Lys Asp Gln Lys Glu Pro Lys Asn Lys Thr Phe 120 Leu Arg Cys Glu Ala Lys Asn Tyr Ser Gly Arg Phe Thr Cys Trp Trp 135 Leu Thr Thr Ile Ser Thr Asp Leu Thr Phe Ser Val Lys Ser Ser Arg 150 Gly Ser Ser Asp Pro Gln Gly Val Thr Cys Gly Ala Ala Thr Leu Ser 170 Ala Glu Arg Val Arg Gly Asp Asn Lys Glu Tyr Glu Tyr Ser Val Glu 185 Cys Gln Glu Asp Ser Ala Cys Pro Ala Ala Glu Glu Ser Leu Pro Ile 200 Glu Val Met Val Asp Ala Val His Lys Leu Lys Tyr Glu Asn Tyr Thr Ser Ser Phe Phe Ile Arg Asp Ile Ile Lys Pro Asp Pro Pro Lys Asn Leu Gln Leu Lys Pro Leu Lys Asn Ser Arg Gln Val Glu Val Ser Trp Glu Tyr Pro Asp Thr Trp Ser Thr Pro His Ser Tyr Phe Ser Leu Thr Phe Cys Val Gln Val Gln Gly Lys Ser Lys Arg Glu Lys Lys Asp Arg Val Phe Thr Asp Lys Thr Ser Ala Thr Val Ile Cys Arg Lys Asn Ala Ser Ile Ser Val Arg Ala Gln Asp Arg Tyr Tyr Ser Ser Ser Trp Ser Glu Trp Ala Ser Val Pro Cys Ser <210> SEQ ID NO 6 <211> LENGTH: 631 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 6 Met Asp Tyr Ser Phe Asp Thr Thr Ala Glu Asp Pro Trp Val Arg Ile Ser Asp Cys Ile Lys Asn Leu Phe Ser Pro Ile Met Ser Glu Asn His Gly His Met Pro Leu Gln Pro Asn Ala Ser Leu Asn Glu Glu Glu Gly | _ | | 35 | | | | | 40 | | | | | 45 | | | | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Thr | Gln
50 | Gly | His | Pro | Asp | Gly
55 | Thr | Pro | Pro | Lys | Leu
60 | Asp | Thr | Ala | Asn | | Gly
65 | Thr | Pro | Lys | Val | Tyr
70 | Lys | Ser | Ala | Asp | Ser
75 | Ser | Thr | Val | Lys | 80
Lys | | Gly | Pro | Pro | Val | Ala
85 | Pro | Lys | Pro | Ala | Trp
90 | Phe | Arg | Gln | Ser | Leu
95 | Lys | | Gly | Leu | Arg | Asn
100 | Arg | Ala | Ser | Asp | Pro
105 | Arg | Gly | Leu | Pro | Asp
110 | Pro | Ala | | Leu | Ser | Thr
115 | Gln | Pro | Ala | Pro | Ala
120 | Ser | Arg | Glu | His | Leu
125 | Gly | Ser | His | | Ile | Arg
130 | Ala | Ser | Ser | Ser | Ser
135 | Ser | Ser | Ile | Arg | Gln
140 | Arg |
Ile | Ser | Ser | | Phe
145 | Glu | Thr | Phe | Gly | Ser
150 | Ser | Gln | Leu | Pro | Asp
155 | ГÀа | Gly | Ala | Gln | Arg
160 | | Leu | Ser | Leu | Gln | Pro
165 | Ser | Ser | Gly | Glu | Ala
170 | Ala | Lys | Pro | Leu | Gly
175 | ГÀа | | His | Glu | Glu | Gly
180 | Arg | Phe | Ser | Gly | Leu
185 | Leu | Gly | Arg | Gly | Ala
190 | Ala | Pro | | Thr | Leu | Val
195 | Pro | Gln | Gln | Pro | Glu
200 | Gln | Val | Leu | Ser | Ser
205 | Gly | Ser | Pro | | Ala | Ala
210 | Ser | Glu | Ala | Arg | Asp
215 | Pro | Gly | Val | Ser | Glu
220 | Ser | Pro | Pro | Pro | | Gly
225 | Arg | Gln | Pro | Asn | Gln
230 | Lys | Thr | Leu | Pro | Pro
235 | Gly | Pro | Asp | Pro | Leu
240 | | Leu | Arg | Leu | Leu | Ser
245 | Thr | Gln | Ala | Glu | Glu
250 | Ser | Gln | Gly | Pro | Val
255 | Leu | | ГÀа | Met | Pro | Ser
260 | Gln | Arg | Ala | Arg | Ser
265 | Phe | Pro | Leu | Thr | Arg
270 | Ser | Gln | | Ser | Cys | Glu
275 | Thr | Lys | Leu | Leu | Asp
280 | Glu | Lys | Thr | Ser | Lys
285 | Leu | Tyr | Ser | | Ile | Ser
290 | Ser | Gln | Val | Ser | Ser
295 | Ala | Val | Met | Lys | Ser
300 | Leu | Leu | Cys | Leu | | Pro
305 | Ser | Ser | Ile | Ser | Cys
310 | Ala | Gln | Thr | Pro | Сув
315 | Ile | Pro | Lys | Glu | Gly
320 | | Ala | Ser | Pro | Thr | Ser
325 | Ser | Ser | Asn | Glu | Asp
330 | Ser | Ala | Ala | Asn | Gly
335 | Ser | | Ala | Glu | Thr | Ser
340 | Ala | Leu | Asp | Thr | Gly
345 | Phe | Ser | Leu | Asn | Leu
350 | Ser | Glu | | Leu | Arg | Glu
355 | Tyr | Thr | Glu | Gly | Leu
360 | Thr | Glu | Ala | ГÀа | Glu
365 | Asp | Asp | Asp | | Gly | Asp
370 | His | Ser | Ser | Leu | Gln
375 | Ser | Gly | Gln | Ser | Val
380 | Ile | Ser | Leu | Leu | | Ser
385 | Ser | Glu | Glu | Leu | 390 | Lys | Leu | Ile | Glu | Glu
395 | Val | ГÀв | Val | Leu | Asp
400 | | Glu | Ala | Thr | Leu | Lys
405 | Gln | Leu | Asp | Gly | Ile
410 | His | Val | Thr | Ile | Leu
415 | His | | Lys | Glu | Glu | Gly
420 | Ala | Gly | Leu | Gly | Phe
425 | Ser | Leu | Ala | Gly | Gly
430 | Ala | Asp | | Leu | Glu | Asn
435 | Lys | Val | Ile | Thr | Val
440 | His | Arg | Val | Phe | Pro
445 | Asn | Gly | Leu | | Ala | Ser
450 | Gln | Glu | Gly | Thr | Ile
455 | Gln | Lys | Gly | Asn | Glu
460 | Val | Leu | Ser | Ile | -continued Asn Gly Lys Ser Leu Lys Gly Thr Thr His His Asp Ala Leu Ala Ile Leu Arg Gln Ala Arg Glu Pro Arg Gln Ala Val Ile Val Thr Arg Lys Leu Thr Pro Glu Ala Met Pro Asp Leu Asn Ser Ser Thr Asp Ser Ala Ala Ser Ala Ser Ala Ala Ser Asp Val Ser Val Glu Ser Thr Ala Glu Ala Thr Val Cys Thr Val Thr Leu Glu Lys Met Ser Ala Gly Leu Gly Phe Ser Leu Glu Gly Gly Lys Gly Ser Leu His Gly Asp Lys Pro Leu Thr Ile Asn Arg Ile Phe Lys Gly Ala Ala Ser Glu Gln Ser Glu Thr Val Gln Pro Gly Asp Glu Ile Leu Gln Leu Gly Gly Thr Ala Met Gln 585 Gly Leu Thr Arg Phe Glu Ala Trp Asn Ile Ile Lys Ala Leu Pro Asp 600 Gly Pro Val Thr Ile Val Ile Arg Arg Lys Ser Leu Gln Ser Lys Glu 615 Thr Thr Ala Ala Gly Asp Ser <210> SEQ ID NO 7 <211> LENGTH: 153 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 7 Met Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ser Leu Ala Leu 10 15 Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu 25 Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe 135 Cys Gln Ser Ile Ile Ser Thr Leu Thr 145 <210> SEQ ID NO 8 <211> LENGTH: 660 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 8 | Met
1 | Glu | Ala | Leu | Met
5 | Ala | Arg | Gly | Ala | Leu
10 | Thr | Gly | Pro | Leu | Arg
15 | Ala | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Leu | Cys | Leu | Leu
20 | Gly | CAa | Leu | Leu | Ser
25 | His | Ala | Ala | Ala | Ala
30 | Pro | Ser | | Pro | Ile | Ile
35 | Lys | Phe | Pro | Gly | Asp
40 | Val | Ala | Pro | ГÀа | Thr
45 | Asp | Lys | Glu | | Leu | Ala
50 | Val | Gln | Tyr | Leu | Asn
55 | Thr | Phe | Tyr | Gly | 60
GÀa | Pro | Lys | Glu | Ser | | Cys
65 | Asn | Leu | Phe | Val | Leu
70 | Lys | Asp | Thr | Leu | Lys
75 | Lys | Met | Gln | Lys | Phe
80 | | Phe | Gly | Leu | Pro | Gln
85 | Thr | Gly | Asp | Leu | Asp
90 | Gln | Asn | Thr | Ile | Glu
95 | Thr | | Met | Arg | Lys | Pro | Arg | CAa | Gly | Asn | Pro
105 | Asp | Val | Ala | Asn | Tyr
110 | Asn | Phe | | Phe | Pro | Arg
115 | Lys | Pro | Lys | Trp | Asp
120 | Lys | Asn | Gln | Ile | Thr
125 | Tyr | Arg | Ile | | Ile | Gly
130 | Tyr | Thr | Pro | Asp | Leu
135 | Asp | Pro | Glu | Thr | Val
140 | Asp | Asp | Ala | Phe | | Ala
145 | Arg | Ala | Phe | Gln | Val
150 | Trp | Ser | Asp | Val | Thr
155 | Pro | Leu | Arg | Phe | Ser
160 | | Arg | Ile | His | Asp | Gly
165 | Glu | Ala | Asp | Ile | Met
170 | Ile | Asn | Phe | Gly | Arg
175 | Trp | | Glu | His | Gly | Asp
180 | Gly | Tyr | Pro | Phe | Asp
185 | Gly | Lys | Asp | Gly | Leu
190 | Leu | Ala | | His | Ala | Phe
195 | Ala | Pro | Gly | Thr | Gly
200 | Val | Gly | Gly | Asp | Ser
205 | His | Phe | Asp | | Asp | Asp
210 | Glu | Leu | Trp | Thr | Leu
215 | Gly | Glu | Gly | Gln | Val
220 | Val | Arg | Val | Lys | | Tyr
225 | Gly | Asn | Ala | Asp | Gly
230 | Glu | Tyr | Cys | ГЛа | Phe
235 | Pro | Phe | Leu | Phe | Asn
240 | | Gly | Lys | Glu | Tyr | Asn
245 | Ser | Сла | Thr | Asp | Thr
250 | Gly | Arg | Ser | Asp | Gly
255 | Phe | | Leu | Trp | Сув | Ser
260 | Thr | Thr | Tyr | Asn | Phe
265 | Glu | Lys | Asp | Gly | Lys
270 | Tyr | Gly | | Phe | Cys | Pro
275 | His | Glu | Ala | Leu | Phe
280 | Thr | Met | Gly | Gly | Asn
285 | Ala | Glu | Gly | | Gln | Pro
290 | Сув | Lys | Phe | Pro | Phe
295 | Arg | Phe | Gln | Gly | Thr
300 | Ser | Tyr | Asp | Ser | | Cys
305 | Thr | Thr | Glu | Gly | Arg
310 | Thr | Asp | Gly | Tyr | Arg
315 | Trp | Cys | Gly | Thr | Thr
320 | | Glu | Asp | Tyr | Asp | Arg
325 | Asp | Lys | Lys | Tyr | Gly
330 | Phe | Сув | Pro | Glu | Thr
335 | Ala | | Met | Ser | Thr | Val
340 | Gly | Gly | Asn | Ser | Glu
345 | Gly | Ala | Pro | CAa | Val
350 | Phe | Pro | | Phe | Thr | Phe
355 | Leu | Gly | Asn | Lys | Tyr
360 | Glu | Ser | Cys | Thr | Ser
365 | Ala | Gly | Arg | | Ser | Asp
370 | Gly | Lys | Met | Trp | Cys
375 | Ala | Thr | Thr | Ala | Asn
380 | Tyr | Asp | Asp | Asp | | Arg
385 | Lys | Trp | Gly | Phe | Cys
390 | Pro | Asp | Gln | Gly | Tyr
395 | Ser | Leu | Phe | Leu | Val
400 | | Ala | Ala | His | Glu | Phe
405 | Gly | His | Ala | Met | Gly
410 | Leu | Glu | His | Ser | Gln
415 | Asp | -continued Pro Gly Ala Leu Met Ala Pro Ile Tyr Thr Tyr Thr Lys Asn Phe Arg Leu Ser Gln Asp Asp Ile Lys Gly Ile Gln Glu Leu Tyr Gly Ala Ser Pro Asp Ile Asp Leu Gly Thr Gly Pro Thr Pro Thr Leu Gly Pro Val Thr Pro Glu Ile Cys Lys Gln Asp Ile Val Phe Asp Gly Ile Ala Gln Ile Arg Gly Glu Ile Phe Phe Phe Lys Asp Arg Phe Ile Trp Arg Thr Val Thr Pro Arg Asp Lys Pro Met Gly Pro Leu Leu Val Ala Thr Phe Trp Pro Glu Leu Pro Glu Lys Ile Asp Ala Val Tyr Glu Ala Pro Gln Glu Glu Lys Ala Val Phe Phe Ala Gly Asn Glu Tyr Trp Ile Tyr Ser Ala Ser Thr Leu Glu Arg Gly Tyr Pro Lys Pro Leu Thr Ser Leu Gly 545 550 555 560 Leu Pro Pro Asp Val Gln Arg Val Asp Ala Ala Phe Asn Trp Ser Lys 565 570 575 Asn Lys Lys Thr Tyr Ile Phe Ala Gly Asp Lys Phe Trp Arg Tyr Asn 585 Glu Val Lys Lys Lys Met Asp Pro Gly Phe Pro Lys Leu Ile Ala Asp 600 Ala Trp Asn Ala Ile Pro Asp Asn Leu Asp Ala Val Val Asp Leu Gln Gly Gly Gly His Ser Tyr Phe Phe Lys Gly Ala Tyr Tyr Leu Lys Leu 630 635 Glu Asn Gln Ser Leu Lys Ser Val Lys Phe Gly Ser Ile Lys Ser Asp Trp Leu Gly Cys <210> SEQ ID NO 9 <211> LENGTH: 707 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 9 Met Ser Leu Trp Gln Pro Leu Val Leu Val Leu Val Leu Gly Cys Cys Phe Ala Ala Pro Arg Gln Arg Gln Ser Thr Leu Val Leu Phe Pro Gly Asp Leu Arg Thr Asn Leu Thr Asp Arg Gln Leu Ala Glu Glu Tyr 40 Leu Tyr Arg Tyr Gly Tyr Thr Arg Val Ala Glu Met Arg Gly Glu Ser Lys Ser Leu Gly Pro Ala Leu Leu Leu Gln Lys Gln Leu Ser Leu Pro Glu Thr Gly Glu Leu Asp Ser Ala Thr Leu Lys Ala Met Arg Thr Pro Arg Cys Gly Val Pro Asp Leu Gly Arg Phe Gln Thr Phe Glu Gly 105 Asp Leu Lys Trp His His His Asn Ile Thr Tyr Trp Ile Gln Asn Tyr 120 | Ser | Glu
130 | Asp | Leu | Pro | Arg | Ala
135 | Val | Ile | Asp | Asp | Ala
140 | Phe | Ala | Arg | Ala | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Phe
145 | Ala | Leu | Trp | Ser | Ala
150 | Val | Thr | Pro | Leu | Thr
155 | Phe | Thr | Arg | Val | Tyr
160 | | Ser | Arg | Asp | Ala | Asp
165 | Ile | Val | Ile | Gln | Phe
170 | Gly | Val | Ala | Glu | His
175 | Gly | | Asp | Gly | Tyr | Pro
180 | Phe | Asp | Gly | Lys | Asp
185 | Gly | Leu | Leu | Ala | His
190 | Ala | Phe | | Pro | Pro | Gly
195 | Pro | Gly | Ile | Gln | Gly
200 | Asp | Ala | His | Phe | Asp
205 | Asp | Asp | Glu | | Leu | Trp
210 | Ser | Leu | Gly | ГЛа | Gly
215 | Val | Val | Val | Pro | Thr
220 | Arg | Phe | Gly | Asn | | Ala
225 | Asp | Gly | Ala | Ala | Сув
230 | His | Phe | Pro | Phe | Ile
235 | Phe | Glu | Gly | Arg | Ser
240 | | Tyr | Ser | Ala | Cys | Thr
245 | Thr
 Asp | Gly | Arg | Ser
250 | Asp | Gly | Leu | Pro | Trp
255 | CÀa | | Ser | Thr | Thr | Ala
260 | Asn | Tyr | Asp | Thr | Asp
265 | Asp | Arg | Phe | Gly | Phe
270 | Cys | Pro | | Ser | Glu | Arg
275 | Leu | Tyr | Thr | Gln | Asp
280 | Gly | Asn | Ala | Asp | Gly
285 | Lys | Pro | CÀa | | Gln | Phe
290 | Pro | Phe | Ile | Phe | Gln
295 | Gly | Gln | Ser | Tyr | Ser
300 | Ala | Cys | Thr | Thr | | Asp
305 | Gly | Arg | Ser | Asp | Gly
310 | Tyr | Arg | Trp | Cys | Ala
315 | Thr | Thr | Ala | Asn | Tyr
320 | | Asp | Arg | Asp | Lys | Leu
325 | Phe | Gly | Phe | CÀa | Pro
330 | Thr | Arg | Ala | Asp | Ser
335 | Thr | | Val | Met | Gly | Gly
340 | Asn | Ser | Ala | Gly | Glu
345 | Leu | СЛа | Val | Phe | Pro
350 | Phe | Thr | | Phe | Leu | Gly
355 | Lys | Glu | Tyr | Ser | Thr
360 | CÀa | Thr | Ser | Glu | Gly
365 | Arg | Gly | Asp | | Gly | Arg
370 | Leu | Trp | Cys | Ala | Thr
375 | Thr | Ser | Asn | Phe | 380
380 | Ser | Asp | Lys | ГЛа | | Trp
385 | Gly | Phe | Cys | Pro | 390 | Gln | Gly | Tyr | Ser | Leu
395 | Phe | Leu | Val | Ala | Ala
400 | | His | Glu | Phe | Gly | His
405 | Ala | Leu | Gly | Leu | Asp
410 | His | Ser | Ser | Val | Pro
415 | Glu | | Ala | Leu | Met | Tyr
420 | Pro | Met | Tyr | Arg | Phe
425 | Thr | Glu | Gly | Pro | Pro
430 | Leu | His | | Lys | Asp | Asp
435 | Val | Asn | Gly | Ile | Arg
440 | His | Leu | Tyr | Gly | Pro
445 | Arg | Pro | Glu | | Pro | Glu
450 | Pro | Arg | Pro | Pro | Thr
455 | Thr | Thr | Thr | Pro | Gln
460 | Pro | Thr | Ala | Pro | | Pro
465 | Thr | Val | Cys | Pro | Thr
470 | Gly | Pro | Pro | Thr | Val
475 | His | Pro | Ser | Glu | Arg
480 | | Pro | Thr | Ala | Gly | Pro
485 | Thr | Gly | Pro | Pro | Ser
490 | Ala | Gly | Pro | Thr | Gly
495 | Pro | | Pro | Thr | Ala | Gly
500 | Pro | Ser | Thr | Ala | Thr
505 | Thr | Val | Pro | Leu | Ser
510 | Pro | Val | | Asp | Asp | Ala
515 | Cys | Asn | Val | Asn | Ile
520 | Phe | Asp | Ala | Ile | Ala
525 | Glu | Ile | Gly | | Asn | Gln
530 | Leu | Tyr | Leu | Phe | Lув
535 | Asp | Gly | Lys | Tyr | Trp
540 | Arg | Phe | Ser | Glu | ``` Gly Arg Gly Ser Arg Pro Gln Gly Pro Phe Leu Ile Ala Asp Lys Trp 550 Pro Ala Leu Pro Arg Lys Leu Asp Ser Val Phe Glu Glu Pro Leu Ser Lys Lys Leu Phe Phe Phe Ser Gly Arg Gln Val Trp Val Tyr Thr Gly Ala Ser Val Leu Gly Pro Arg Arg Leu Asp Lys Leu Gly Leu Gly Ala Asp Val Ala Gln Val Thr Gly Ala Leu Arg Ser Gly Arg Gly Lys Met Leu Leu Phe Ser Gly Arg Arg Leu Trp Arg Phe Asp Val Lys Ala Gln Met Val Asp Pro Arg Ser Ala Ser Glu Val Asp Arg Met Phe Pro Gly Val Pro Leu Asp Thr His Asp Val Phe Gln Tyr Arg Glu Lys Ala Tyr Phe Cys Gln Asp Arg Phe Tyr Trp Arg Val Ser Ser Arg Ser Glu Leu 675 680 685 Asn Gln Val Asp Gln Val Gly Tyr Val Thr Tyr Asp Ile Leu Gln Cys 690 \hspace{1.5cm} 695 \hspace{1.5cm} 700 \hspace{1.5cm} Pro Glu Asp 705 <210> SEO ID NO 10 <211> LENGTH: 143 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 10 Met Gln His Arg Gly Phe Leu Leu Leu Thr Leu Leu Ala Leu Leu Ala Leu Thr Ser Ala Val Ala Lys Lys Lys Asp Lys Val Lys Lys Gly Gly 20 25 30 Pro Gly Ser Glu Cys Ala Glu Trp Ala Trp Gly Pro Cys Thr Pro Ser Ser Lys Asp Cys Gly Val Gly Phe Arg Glu Gly Thr Cys Gly Ala Gln Thr Gln Arg Ile Arg Cys Arg Val Pro Cys Asn Trp Lys Lys Glu Phe 65 70 75 80 Gly Ala Asp Cys Lys Tyr Lys Phe Glu Asn Trp Gly Ala Cys Asp Gly Gly Thr Gly Thr Lys Val Arg Gln Gly Thr Leu Lys Lys Ala Arg Tyr Asn Ala Gln Cys Gln Glu Thr Ile Arg Val Thr Lys Pro Cys Thr Pro 120 Lys Thr Lys Ala Lys Ala Lys Lys Gly Lys Gly Lys Asp 135 <210> SEQ ID NO 11 <211> LENGTH: 223 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 11 Met Asn Lys Pro Leu Leu Trp Ile Ser Val Leu Thr Ser Leu Leu Glu ``` | -continued | |------------| |------------| | _ | | | | | | | | | | | | | | | | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Ala | Phe | Ala | His
20 | Thr | Asp | Leu | Ser | Gly
25 | Lys | Val | Phe | Val | Phe
30 | Pro | Arg | | Glu | Ser | Val
35 | Thr | Asp | His | Val | Asn
40 | Leu | Ile | Thr | Pro | Leu
45 | Glu | ГÀа | Pro | | Leu | Gln
50 | Asn | Phe | Thr | Leu | Сув
55 | Phe | Arg | Ala | Tyr | Ser
60 | Asp | Leu | Ser | Arg | | Ala
65 | Tyr | Ser | Leu | Phe | Ser
70 | Tyr | Asn | Thr | Gln | Gly
75 | Arg | Asp | Asn | Glu | Leu
80 | | Leu | Val | Tyr | ГÀз | Glu
85 | Arg | Val | Gly | Glu | Tyr
90 | Ser | Leu | Tyr | Ile | Gly
95 | Arg | | His | Lys | Val | Thr
100 | Ser | Lys | Val | Ile | Glu
105 | Lys | Phe | Pro | Ala | Pro
110 | Val | His | | Ile | Cys | Val
115 | Ser | Trp | Glu | Ser | Ser
120 | Ser | Gly | Ile | Ala | Glu
125 | Phe | Trp | Ile | | Asn | Gly
130 | Thr | Pro | Leu | Val | Lys
135 | Lys | Gly | Leu | Arg | Gln
140 | Gly | Tyr | Phe | Val | | Glu
145 | Ala | Gln | Pro | Lys | Ile
150 | Val | Leu | Gly | Gln | Glu
155 | Gln | Asp | Ser | Tyr | Gly
160 | | Gly | Lys | Phe | Asp | Arg
165 | Ser | Gln | Ser | Phe | Val
170 | Gly | Glu | Ile | Gly | Asp
175 | Leu | | Tyr | Met | Trp | Asp
180 | Ser | Val | Leu | Pro | Pro
185 | Glu | Asn | Ile | Leu | Ser
190 | Ala | Tyr | | Gln | Gly | Thr
195 | Pro | Leu | Pro | Ala | Asn
200 | Ile | Leu | Asp | Trp | Gln
205 | Ala | Leu | Asn | | Tyr | Glu
210 | Ile | Arg | Gly | Tyr | Val
215 | Ile | Ile | Lys | Pro | Leu
220 | Val | Trp | Val | | 35 We claim: 1. A method for evaluating renal status in a subject, comprising: obtaining a urine sample from a subject selected for evaluation based on a determination that the subject is 40 at risk of a future acute renal injury; performing one or more assays configured to detect a kidney injury marker selected from the group consisting of Clusterin, Heart-type fatty acid binding protein, Hepatocyte growth factor, Interferon gamma, Interleukin-12 subunit beta, Interleukin-16, Interleukin-2, 72 kDa type IV collagenase, Matrix metalloproteinase-9, Midkine, and Serum amyloid P-component by introducing the urine sample obtained from the subject into an assay instrument which (i) contacts the urine sample with one or more antibodies which specifically bind for detection the biomarker(s) which are assayed, and (ii) generates one or more assay results indicative of binding of each biomarker which is assayed to a respective antibody to provide one or more assay results; correlating the assay result(s) generated by the assay instrument to the renal status of the subject, wherein said correlation step comprises correlating the assay result(s) to one or more of risk stratification, staging, prognosis, classifying and monitoring of the renal 60 status of the subject, wherein said correlating step comprises assigning a likelihood of one or more future changes in renal status to the subject based on the assay result(s); and treating the patient based on the predetermined subpopulation of individuals to which the patient is assigned, wherein the treatment comprises one or more of initiating renal replacement therapy, withdrawing delivery of compounds that are known to be damaging to the kidney, delaying or avoiding procedures that are known to be damaging to the kidney, and modifying diuretic administration. - 2. A method according to claim 1, wherein said one or more future changes in renal status comprise one or more of a future injury to renal function, future reduced renal function, future improvement in renal function, and future acute renal failure (ARF). - 3. A method according to claim 1, wherein said assay result(s) comprise one or more of: - (i) a measured concentration of Clusterin, - (ii) a measured concentration of Heart-type fatty acid binding protein, - (iii) a measured concentration of Hepatocyte growth factor. - (iv) a measured concentration of Interferon gamma, - (v) a measured concentration of Interleukin-12 subunit beta, - (vi) a measured concentration of Interleukin-16, - (vii) a measured concentration of Interleukin-2, - (viii) a measured concentration of 72 kDa type IV collagenase, - (ix) a measured concentration of Matrix metalloproteinase-9. - (x) a measured concentration of Midkine, or - (xi) a measured concentration of Serum amyloid P-component, and said correlation step comprises, for each assay result, comparing said measure concentration to a threshold concentration, and **70** for a positive going marker, assigning an increased likelihood of suffering a future injury to renal function, future reduced renal function, future ARF, or a future improvement in renal function to the subject when the measured concentration is above the threshold, relative to a likelihood assigned when the measured concentration is below the threshold or assigning a decreased likelihood of suffering a future injury to renal function, future reduced renal function, future ARF, or a future improvement in renal function to the subject when the measured concentration is below the threshold, relative to a likelihood assigned when the measured concentration is above the threshold, or for a negative going marker, assigning an increased likelihood of suffering a future injury to renal function, future reduced renal function, future ARF, or a future improvement in renal function to the subject when the measured concentration is below the threshold, relative to a likelihood assigned when the measured concentration is above the threshold or assigning a decreased likelihood of suffering a future injury to renal function, future reduced renal function, future ARF, or a future improvement in renal function to the subject when the measured concentration is above the threshold, relative to a likelihood assigned when the measured concentration is below the threshold. - **4**. A method
according to claim **2**, wherein said one or more future changes in renal status comprise a clinical outcome related to a renal injury suffered by the subject. - 5. A method according to claim 2, wherein the likelihood of one or more future changes in renal status is that an event of interest is more or less likely to occur within 30 days of the time at which the urine sample is obtained from the subject. - 6. A method according to claim 2, wherein the likelihood of one or more future changes in renal status is that an event of interest is more or less likely to occur within 72 hours. - 7. A method according to claim 6, wherein the likelihood of one or more future changes in renal status is that an event of interest is more or less likely to occur within 48 hours. 72 - **8**. A method according to claim **1**, wherein the subject is selected for evaluation of renal status based on the pre-existence in the subject of one or more known risk factors for prerenal, intrinsic renal, or postrenal ARF. - 9. A method according to claim 1, wherein the subject is selected for evaluation of renal status based on an existing diagnosis of one or more of congestive heart failure, preeclampsia, eclampsia, diabetes mellitus, hypertension, coronary artery disease, proteinuria, renal insufficiency, glomerular filtration below the normal range, cirrhosis, serum creatinine above the normal range, sepsis, injury to renal function, reduced renal function, or ARF, or based on undergoing or having undergone major vascular surgery, coronary artery bypass, or other cardiac surgery, or based on exposure to NSAIDs, cyclosporines, tacrolimus, aminoglycosides, foscarnet, ethylene glycol, hemoglobin, myoglobin, ifosfamide, heavy metals, methotrexate, radiopaque contrast agents, or streptozotocin. - 10. A method according to claim 1, wherein said correlating step comprises assigning a diagnosis of the occurrence or nonoccurrence of one or more of an injury to renal function, reduced renal function, or ARF to the subject based on the assay result(s). - 11. A method according to claim 1, wherein said correlating step comprises assessing whether or not renal function is improving or worsening in a subject who has suffered from an injury to renal function, reduced renal function, or ARF based on the assay result(s). - 12. A method according to claim 6, wherein said method is a method of assigning a risk of the future occurrence or nonoccurrence of an injury to renal function in said subject. - 13. A method according to claim 7, wherein said method is a method of assigning a risk of the future occurrence or nonoccurrence of an injury to renal function in said subject. - **14.** A method according to claim **6**, wherein said method is a method of assigning a risk of the future occurrence or nonoccurrence of acute renal failure in said subject. - 15. A method according to claim 7, wherein said method is a method of assigning a risk of the future occurrence or nonoccurrence of acute renal failure in said subject. * * * * *